All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math
Prime as sum of Cubes of terms of AP? (Posted on 2008-03-02) Difficulty: 2 of 5
Let Si be the ith term of an Arithmetic Progression whose 1st term is a and common difference d. Show that for any 2 positive integers m,n(>m), Σ(i:m to n)(Si)3 can't be a prime number.

Note: a,d are positive integers.

See The Solution Submitted by Praneeth    
Rating: 2.6667 (3 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
re official solution -- IS NOT PERFECT Comment 4 of 4 |

The official  solution asumes even number of members

It is easy to show that the sum of cubes is always divisible by the mean,  m-n being odd or even,

b. 


Edited on January 19, 2021, 3:11 am
  Posted by Ady TZIDON on 2008-03-08 19:45:10

Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (1)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (6)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information