All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math
Going Greatest With Arithmetic, Geometric And Harmonic (Posted on 2008-03-22) Difficulty: 2 of 5
(A) Determine all possible non zero real P such that {P}, [P] and P are in arithmetic sequence.

(B) Determine all possible non zero real Q such that {Q}, [Q] and Q are in geometric sequence.

(C) Determine all possible non zero real R such that [R], {R} and R are in geometric sequence.

(D) Determine all possible non zero real S such that {S}, [S] and S are in harmonic sequence.

Note: [x] is defined as the greatest integer ≤ x and {x} = x - [x]

See The Solution Submitted by K Sengupta    
Rating: 2.0000 (2 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
re(2): solutions | Comment 3 of 5 |
(In reply to re: solutions by Dej Mar)

That's why I referred to that as a pseudo-solution.

 


  Posted by Charlie on 2008-03-23 10:25:17
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (1)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (6)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information