Hi!
1.First limit
Let be a(m) = m!/m^m. So a(m+1) = (m+1)!/(m+1)^m+1
Cauchy - D'Alembert prove that the initial limit is the same with
lim a(m+1)/a(m) when m is going to infinit.
After calculus L(1) = lim 1/(1+1/m)^m = 1/e
2. Second limit
The same ideea!
Le be b(m) = (2m+1)(2m+2).....(2m+m)/m^m
So b(m+1) = (2m+3)(2m+4).....(3m)(3m+1)(3m+2)(3m+3)/(m+1)^(m+1)
The second limit is the same with lim b(m+1)/b(m) when m is going to infinit
After calculul L(2) = 27/4 * lim 1/(1+1/m)^m = 27/(4*e)
So i find
L(1) = 1/e
L(2) = 27/4*1/e
The problem can be generalise!
Sorry that in the title i write Gauss - D'Alembert in fact is Caucy - D'Alembert
The Cauchy - D'Alembert criterion say that
lim square root(a(m)) = lim a(m+1)/a(m) where the square root is take m times.
See the link below:
http://www.uel-pcsm.cines.fr/consultation/reference/mathematiques/serie/apprendre/chapitre4/partie1/titre3.htm
Edited on March 27, 2008, 3:31 am