Derive a formula for evaluating the following expression in terms of
p and its higher powers, given that
p is a
positive integer.
Σ ([3√m] + <3√m>)
m=1 to p3
Note: [x] is the greatest integer ≤ x, and <x> is the least integer ≥ x
(In reply to
answer by Praneeth)
Verified gives the same answers:
1 2 2
2 24 24
3 120 120
4 380 380
5 930 930
6 1932 1932
7 3584 3584
8 6120 6120
9 9810 9810
10 14960 14960
11 21912 21912
12 31044 31044
13 42770 42770
14 57540 57540
15 75840 75840
16 98192 98192
17 125154 125154
18 157320 157320
19 195320 195320
20 239820 239820
DEFDBL A-Z
CLS
FOR p = 1 TO 20
t = 0
FOR i = 1 TO p * p * p
cr = INT(i ^ (1 / 3) + .5)
IF cr * cr * cr <> i THEN cr = i ^ (1 / 3)
t = t + INT(cr) - INT(-cr)
NEXT
PRINT p, t, p * (p + 1) * (3 * p * p - 3 * p + 2) / 2
NEXT
|
Posted by Charlie
on 2008-05-23 00:10:42 |