(In reply to
Solution by FrankM)
I must admit I don't follow FrankM's derivation. To me it just looks like 1/u * (1+u/2) - 1 is what is being said, but that's doesn't strike me as having a limit of 1/2.
The limit does however seem to be 1/2, as this repeated doubling of y shows:
y f(y)
1 0.55377397403004
2 0.54735699843337
4 0.53958456106175
8 0.53173024538280
16 0.52461445374074
32 0.51862290522359
64 0.51382883162673
128 0.51012856130407
256 0.50734450184131
512 0.50528737323993
1024 0.50378675813856
2048 0.50270201685996
4096 0.50192293247069
8192 0.50136592435133
16384 0.50096897390958
32768 0.50068673371316
65536 0.50048637901274
131072 0.50034431511696
262144 0.50024366442744
524288 0.50017239529913
1048576 0.50012195118320
2097152 0.50008625716939
4194304 0.50006100536393
8388608 0.50004314347525
16777216 0.50003051012880
33554432 0.50002157546159
67108864 0.50001525692657
134217728 0.50001078866195
268435456 0.50000762892889
536870912 0.50000539456379
1073741824 0.50000381458085
2147483648 0.50000269734010
4294967296 0.50000190731953
8589934592 0.50000134868461
17179869184 0.50000095366704
34359738368 0.50000067434594
68719476736 0.50000047683534
137438953472 0.50000033717387
274877906944 0.50000023841812
549755813888 0.50000016858718
1099511627776 0.50000011920918
2199023255552 0.50000008429367
4398046511104 0.50000005960464
8796093022208 0.50000004214689
17592186044416 0.50000002980232
35184372088832 0.50000002107345
70368744177664 0.50000001490116
140737488355328 0.50000001053741
DEFDBL A-Z
y = 1
FOR i = 1 TO 48
v = SQR(y + SQR(y + SQR(y))) - SQR(y)
PRINT USING "############### #.##############"; y; v
y = y * 2
NEXT
|
Posted by Charlie
on 2008-05-25 13:33:08 |