A(1)=sqrt(1/2)=Cos(pi/4)
A(n)=sqrt( (A(n-1)+1)/2 )
we also have Cos(x/2)=sqrt( (Cos(x)+1)/2 )
putting these togeather we get
A(n)=Cos(pi/( 2^(n+1)))
that makes P=Cos(pi/4)*Cos(pi/8)*.....
now eulers infinite product states that Cos(t/2)*Cos(t/4)*.....=Sin(t)/t
if we let t=pi/2 we get P and thus P=Sin(pi/2)/(pi/2)=2Sin(pi/2)/pi
thus P=2/Pi
blackjack
flooble's webmaster puzzle