Place 9 balls ("o") in the intersections of the grid below to achieve 10 straight lines, each line containing 3 and exactly 3 balls. You may assume, if you need, that each cell is a perfect square.
+---+---+---+---+---+---+---+---+
| | | | | | | | |
+---+---+---+---+---+---+---+---+
| | | | | | | | |
+---+---+---+---+---+---+---+---+
| | | | | | | | |
+---+---+---+---+---+---+---+---+
| | | | | | | | |
+---+---+---+---+---+---+---+---+
| | | | | | | | |
+---+---+---+---+---+---+---+---+
| | | | | | | | |
+---+---+---+---+---+---+---+---+
(In reply to
Is that all there is, my friend, then ... by ed bottemiller)
Ed:
Can you please post an example of a solution that is not just a placement or rotational symmetry of the presented solution?
|
Posted by AvalonXQ
on 2008-10-14 23:02:55 |