10 F=999:N=1:Tot=F
20
25 open "f1998.txt" for output as #2
30 for N=2 to 2000
40 F=Tot//(N*N-1)
50 Tot=Tot+F
60 print #2,N,F
70 next
80 close
produces (shown with ellipsis for space considerations--also UBASIC's doubled slashes reduced to single):
2 333
3 333/2
4 999/10
5 333/5
6 333/7
7 999/28
8 111/4
9 111/5
10 999/55
11 333/22
12 333/26
13 999/91
14 333/35
15 333/40
16 999/136
17 111/17
18 111/19
19 999/190
20 333/70
21 333/77
22 999/253
23 333/92
24 333/100
25 999/325
26 37/13
27 37/14
28 999/406
29 333/145
30 333/155
31 999/496
32 333/176
33 333/187
34 999/595
35 111/70
36 3/2
37 27/19
38 333/247
39 333/260
40 999/820
41 333/287
42 333/301
43 999/946
44 111/110
45 111/115
46 999/1081
47 333/376
48 333/392
49 999/1225
50 333/425
51 333/442
52 999/1378
53 37/53
54 37/55
55 999/1540
56 333/532
57 333/551
58 999/1711
59 333/590
60 333/610
61 999/1891
62 111/217
63 111/224
...
1976 333/651092
1977 333/651751
1978 999/1957231
1979 111/217690
1980 111/217910
1981 999/1963171
1982 333/655051
1983 333/655712
1984 999/1969120
1985 333/657035
1986 333/657697
1987 999/1975078
1988 111/219674
1989 111/219895
1990 999/1981045
1991 333/661012
1992 333/661676
1993 999/1987021
1994 333/663005
1995 333/663670
1996 999/1993006
1997 1/1997
1998 1/1999
1999 999/1999000
2000 333/667000
Inspection shows f(n) = 999 * 2 / (n*(n+1)), but in any event, f(1998) = 1/1999.
|
Posted by Charlie
on 2008-10-31 14:23:37 |