All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > General
Building a ruler (Posted on 2008-11-14) Difficulty: 2 of 5
I have an unmarked ruler (AD) of length 6cm. Making two marks in it, one (B) at 1cm from the left end and other (C) at 2cm from the right end, I´m able to measure any integer length from 1 to 6 cm:
       +----+-------------+--------+
       A    B             C        D
AB = 1cm / CD = 2cm / BC = 3cm / AC = 4cm / BD = 5cm / AD = 6cm.

If I have an unmarked ruler of length 14cm, what is the minimum number of marks, and where do I have to make them, in order to be able to measure any integer length from 1 to 14cm?

See The Solution Submitted by pcbouhid    
Rating: 5.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution solution | Comment 2 of 11 |
(In reply to Catch? by ed bottemiller)

I don't think there was a catch.

I also origianally got 130 solutions but added a history internal array so I could weed out solutions that were the reverse of previous solutions.  It turns out (with hindsight) that I could have accomplished that by requiring a mark at 1; I didn't know ahead of time that no solution depends on having an internal distance of 1 cm.

The 65 solutions with 5 marks not counting their mirror images:

1   2   3   4   9
1   2   3   6  10
1   2   3   7  10
1   2   3   7  11
1   2   3   8  10
1   2   3   8  12
1   2   3   9  10
1   2   3   9  13
1   2   4   6  11
1   2   4   6  13
1   2   4   8  13
1   2   5   6  12
1   2   5   8  11
1   2   5   8  12
1   2   5   9  11
1   2   6   7  11
1   2   6   8  11
1   2   6   9  11
1   2   6   9  12
1   2   6  10  13
1   2   6  11  13
1   2   7   8  11
1   2   7   9  11
1   2   7  10  11
1   2   7  10  12
1   2   7  10  13
1   2   8   9  12
1   2   8  10  13
1   3   4   6  13
1   3   4   7  12
1   3   4   8  12
1   3   4   8  13
1   3   5   6  13
1   3   5   7  13
1   3   5   8  13
1   3   5  11  12
1   3   6   9  13
1   3   6  10  12
1   3   6  10  13
1   3   7   9  13
1   3   7  11  12
1   3   8   9  13
1   3   8  10  12
1   3   8  10  13
1   3   8  11  12
1   3   9  10  12
1   3   9  10  13
1   4   5   6  12
1   4   5   7  12
1   4   5   8  12
1   4   5  10  12
1   4   5  11  12
1   4   7   9  12
1   4   7  10  12
1   4   8   9  12
1   5   6  11  12
1   5   8  10  12
1   5   8  11  12
1   5   9  11  12
1   6   7  10  12
1   7   8  10  12
1   7   9  10  12
1   7   9  11  12
1   8   9  10  12
1   8   9  11  12

 

The program includes 7 "marks", counting two of which are the end points of the ruler.

DECLARE SUB place (which!)
DIM SHARED n, m(10), ct, h(200, 10)
m(1) = 0: m(2) = 14

CLS

FOR n = 4 TO 7
  REDIM SHARED used(14), lst(n)
  used(0) = 1: used(14) = 1
  place 3
NEXT

PRINT : PRINT ct

SUB place (which)
 IF which = 3 THEN st = 1:  ELSE st = m(which - 1) + 1
 FOR psn = st TO 14 - (n - which)
   IF used(psn) = 0 THEN
      used(psn) = 1
      m(which) = psn
      IF which = n THEN
        REDIM meas(14)
        FOR i = 1 TO n
         FOR j = 1 TO n
           dist = ABS(m(i) - m(j))
           meas(dist) = 1
         NEXT j
        NEXT i
        good = 1
        FOR i = 1 TO 14
         IF meas(i) = 0 THEN good = 0: EXIT FOR
        NEXT
        IF good THEN
          FOR i = 1 TO ct
            match = 1
            FOR j = 3 TO n
              IF m(j) <> 14 - h(i, n - j + 3) THEN match = 0: EXIT FOR
            NEXT
            IF match THEN good = 0: EXIT FOR
          NEXT i
          IF good THEN
            ct = ct + 1
            FOR i = 3 TO n
              PRINT USING "####"; m(i);
              h(ct, i) = m(i)
            NEXT
            PRINT
            IF ct MOD 40 = 0 THEN DO: LOOP UNTIL INKEY$ > "": PRINT
          END IF
        END IF
      ELSE
        place which + 1
      END IF
      used(psn) = 0
   END IF
 NEXT psn
END SUB

 


  Posted by Charlie on 2008-11-14 18:06:03
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (3)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information