Let NOZ(t) denote the number of consecutive zeroes
in the rightmost part of t.
Clearly NOZ(T!)= NOZ((T-1)!) unless T is a multiple of 5. èrule A
If T is a multiple of 5^k (k>0) then NOZ(T!)= NOZ((T-1)!)+k. è rule B
The first factorial ending with one zero is 5!
So are 6!,7! 8! and 9!- rule A-- but NOZ(10!)=2, NOZ(15!)=3, NOZ(25!)=6 etc! Therefore multiplying all factorials between 5! and 99! will get us five times the sum of all the integers between 1 and 22 inclusive , omitting 5, 11 , and 17 è rule B.
So NOZ(1!*2!*3!*4!*…..98!*99!)= 5*(1/2*(1+22)*22-5-1-17)=5*( 253-33)= 1100
Adding NOZ(100)=24 we get 1124.
Since the puzzle requests the answer mod 1000 =è we end up with 124.<o:p></o:p>
<o:p></o:p>
<o:p> </o:p>
Edited on November 28, 2008, 12:47 am