A seven digit positive
octal integer
X is constituted by arranging the nonzero octal digits 1-7 in some order, so that:
- The octal number formed by the first two digits is divisible by 2.
- The octal number formed by the first three digits is divisible by 3.
- The octal number formed by the first four digits is divisible by 4.
- and, so on up to seven digits...
Determine all possible value(s) that
X can assume.
(In reply to
re: computer solution by Stephanie)
Worked your way, right to left, the following all work, including the one you mention:
1253674 60 444 1980 22460 87996 350140
2173564 52 372 1908 30580 63348 587636
2561374 60 252 764 25340 189180 713468
2765314 12 204 2764 27340 256716 781004
3215674 60 444 3004 7100 72636 859068
3261754 44 492 1004 25580 91116 877548
3765124 20 84 2644 27220 256596 1043028
5176234 28 156 3228 31900 64668 1375388
5261374 60 252 764 25340 90876 1401596
5317264 52 180 3764 7860 106164 1416884
5671234 28 156 668 29340 225948 1536668
6157234 28 156 3740 24220 56988 1629852
6237154 44 108 3692 15980 81516 1654380
6572314 12 204 1228 29900 193740 1766604
6732154 44 108 1132 13420 242796 1815660
7352614 12 396 1420 21900 120204 1955212
7531264 52 180 692 12980 176820 2011828
Obtained by changing LEFT$ to RIGHT$ in my program.
|
Posted by Charlie
on 2009-03-30 17:50:25 |