All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math
Digits 1-7 (Posted on 2009-03-30) Difficulty: 2 of 5
A seven digit positive octal integer X is constituted by arranging the nonzero octal digits 1-7 in some order, so that:
  • The octal number formed by the first two digits is divisible by 2.
  • The octal number formed by the first three digits is divisible by 3.
  • The octal number formed by the first four digits is divisible by 4.
  • and, so on up to seven digits...
Determine all possible value(s) that X can assume.

See The Solution Submitted by K Sengupta    
Rating: 5.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
re(2): computer solution | Comment 5 of 6 |
(In reply to re: computer solution by Stephanie)

Worked your way, right to left, the following all work, including the one you mention:

1253674 60  444  1980  22460  87996  350140
2173564 52  372  1908  30580  63348  587636
2561374 60  252  764  25340  189180  713468
2765314 12  204  2764  27340  256716  781004
3215674 60  444  3004  7100  72636  859068
3261754 44  492  1004  25580  91116  877548
3765124 20  84  2644  27220  256596  1043028
5176234 28  156  3228  31900  64668  1375388
5261374 60  252  764  25340  90876  1401596
5317264 52  180  3764  7860  106164  1416884
5671234 28  156  668  29340  225948  1536668
6157234 28  156  3740  24220  56988  1629852
6237154 44  108  3692  15980  81516  1654380
6572314 12  204  1228  29900  193740  1766604
6732154 44  108  1132  13420  242796  1815660
7352614 12  396  1420  21900  120204  1955212
7531264 52  180  692  12980  176820  2011828

Obtained by changing LEFT$ to RIGHT$ in my program.


  Posted by Charlie on 2009-03-30 17:50:25
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (3)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information