The diagrams below each show only the members of one sequence as marked. Instead of the number itself, it shows the sequential position of that number within the sequence, as it's easier to connect 1,2,3, etc. than the actual numbers that make up the sequence.
prime
. . . . . . . . . 24 . . .
. . 15 24 . 51 16 . . . . 51 .
. 19 . 18 . . . . . 16 . . 15
16 . 6 17 . . . 6 . . . . 1
. . . . . 24 . . 6 . . . 51
. . . . 20 . . . . . . . .
. . . . . . . . . . . . 14
15 . 14 1 1 . . . . . . . .
. . . . . . 17 . . . . . .
18 17 . 18 19 51 20 . . . . . .
. 16 15 . . . 16 . . . . . .
. . . . . . . . . 51 . . .
. 17 . . 18 . 17 . . . 18 . 19
triangle
10 . . 7 . 10 . . 9 . . . .
10 . . . . . . . 11 . . . .
. . 6 . 11 . . 9 . . . . .
. 23 . . 6 22 5 . 21 . 7 . .
. . . . . . . . . . 22 . .
. . . . . . 22 7 20 5 . 26 25
20 . . 5 6 . 21 . 10 . . . .
. . . . . . . 9 . 7 9 . .
. . . . 22 . . . . . 21 . .
. . . . . . . 17 15 . 20 . .
. . . . . 24 . 23 6 22 . 23 24
26 . 25 13 . 24 . 11 13 . 11 23 25
. . . . . . . 20 . 21 . 22 .
square
. . . . 15 . . 16 . . . 19 12
. 13 . . 14 . . 15 . 12 16 . 17
. . . . . 4 . . . . . 15 .
. . . . . . . . . 13 . 14 .
18 16 . 19 15 . . 16 . 17 . 18 .
. . . 8 . . . . . . 8 . .
. 4 . . . . . . . . . . .
. . . . . 2 2 . 2 . . . .
18 17 . . . . . 18 . . . . 2
. . 4 . . . . . . . . . .
17 . . . 16 . . . . . . . .
. . . . 2 . . . . . . . .
19 . . . . 8 . . . . . . .
pentagonal
. 8 . . . . 3 . . . 7 . .
. . . . . . . . . . . . .
. . . . . . . . 5 . 6 . .
. . . . . . . . . . . . .
. . 5 . . . 4 . . . . . .
. 4 5 . . . . . 12 . . . .
12 . 5 . . 4 . 8 . 5 7 8 .
. 3 . . . . . . . . . 6 7
. . . 8 . 3 . . 4 . . 5 .
. . . . . . . . . 4 12 9 3
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . 6 7 . . . 12 5 . . . .
hexagonal
. . . 4 . . . . 5 . . . .
. . . . . . . . 6 . . . .
. . . . 6 . . 5 . . . . .
. 12 . . . . 3 . 11 . 4 . .
. . . . . . . . . . . . .
. . . . . . . 4 . 3 . . 13
. . . 3 . . 11 . . . . . .
. . . . . . . 5 . 4 5 . .
. . . . . . . . . . 11 . .
. . . . . . . 9 8 . . . .
. . . . . . . 12 . . . 12 .
. . 13 7 . . . 6 7 . 6 12 13
. . . . . . . . . 11 . . .
Fibonacci
10 . 9 . . 10 . . . 11 . . 12
10 . . 11 . 13 . . . 12 . 13 .
9 . 8 . . . 6 . . . . . .
. . 7 . 8 . . 7 . . . . 3
. . . . . 11 . . 7 . . . 13
. . . . . . . . . . . . .
. . . . 8 . . . 10 . . . .
. . . 3 3 . . . . . . . .
. . 6 . . . . . . 6 . . .
. . . . . 13 . . . . . . .
. . . . . . . . 8 . 9 . .
. 6 . . . . 6 . . 13 . . .
. . . . . . . . . . . . .
powers of 2
. . . . . . . 8 . . . . .
. . . . . . . . . . 8 . .
. . . . . 4 3 . . . . . .
. . . . . . . . . . . . 1
. 8 . . . . . 8 . . . . .
7 . . 6 . 5 . . . . 6 . .
. 4 . . . . . . . . . . .
. . . 1 1 2 2 . 2 . . . .
. . 3 . . . . . . 3 . . 2
. . 4 . . . . . . . . . .
. . . 7 8 . . . . . . . .
. 3 . . 2 . 3 . . . . . .
. . . . . 6 . . . . . . .
The following diagram shows potential conflicts, where a given entry fits more than one sequence. The letters indicate Prime, Triangular, Fibonacci, heXagonal, Square, poWers of 2, (p)entagonal numbers. The format is a little tight as exemplified in the representation of two successive 2's (at h4 and h5):
P 1F 3P 1F 3S
W 1 W 1
showing each is prime no. 1, Fibonacci no. 3 and power of 2 no. 1.
or 256, 45 and 89 in a 8-10, as
S16W 8T 9X 5P24F11
for square 16, power of 2 8; then triangular 9 hex 5; and prime 24 Fibonacci 11.
T10F10 . . T 7X 4 . T10F10 . S16W 8T 9X 5P24F11 . . S12F12
. . . . . .
T10F10 . . P24F11 . P51F13 . . T11X 6S12F12S16W 8P51F13 .
. . . . . .
. . T 6F 8 . T11X 6S 4W 4F 6W 3T 9X 5 . . . . .
. . . . . . . .
. T23X12P 6F 7 . T 6F 8 . T 5X 3P 6F 7T21X11 . T 7X 4 . P 1F 3
. . . . . W 1
. S16W 8 . . . P24F11 . S16W 8P 6F 7 . . . P51F13
. . . . . . . .
. . . S 8W 6 . . . T 7X 4T20p12T 5X 3S 8W 6 . T25X13
. . . . . . .
T20p12S 4W 4 . T 5X 3T 6F 8 . T21X11 . T10F10 . . . .
. . . . . . .
. . . P 1F 3P 1F 3S 2W 2S 2W 2T 9X 5S 2W 2T 7X 4T 9X 5 . .
. . . W 1 W 1 . .
. . F 6W 3 . . . . . . F 6W 3T21X11 . S 2W 2
. . . . . . . . .
. . S 4W 4 . . P51F13 . T17X 9T15X 8 . T20p12 . .
. . . . . . . .
. . . . S16W 8 . . T23X12T 6F 8 . . T23X12 .
. . . . . . . . .
. F 6W 3T25X13T13X 7S 2W 2 . F 6W 3T11X 6T13X 7P51F13T11X 6T23X12T25X13
. .
. . . . . S 8W 6 . T20p12 . T21X11 . . .
. . . . . . . . . .
produced by
DIM n(13, 13), prm(85), fib(15), bd$(13, 13)
CLS
DATA 2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71
DATA 73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173
DATA 179,181,191,193,197,199,211,223,227,229,233,239,241,251,257
DATA 263,269,271,277,281,283,293,307,311,313,317,331,337,347,349
DATA 353,359,367,373,379,383,389,397,401,409,419,421,431,433,439
FOR i = 1 TO 85: READ prm(i): NEXT
fib(1) = 1: fib(2) = 1
FOR i = 3 TO 15: fib(i) = fib(i - 2) + fib(i - 1): NEXT
OPEN "seqtrail.txt" FOR INPUT AS #1
OPEN "seqtrl.txt" FOR OUTPUT AS #2
FOR i = 0 TO 13
LINE INPUT #1, l$
l$ = LTRIM$(l$ + " ")
FOR j = 0 TO 13
ix = INSTR(l$, " ")
n(i, j) = VAL(LEFT$(l$, ix - 1))
l$ = LTRIM$(MID$(l$, ix + 1))
NEXT
NEXT
PRINT #2, : PRINT #2, "prime": PRINT #2,
FOR i = 1 TO 13
FOR j = 1 TO 13
pr = n(i, j): prNo = 0
FOR k = 1 TO 85
IF prm(k) = pr THEN prNo = k: EXIT FOR
NEXT
IF prNo > 0 THEN
PRINT #2, USING "###"; prNo;
bd$(i, j) = bd$(i, j) + "P" + RIGHT$(" " + LTRIM$(STR$(prNo)), 2)
ELSE
PRINT #2, " .";
END IF
NEXT
PRINT #2, : PRINT #2,
NEXT
PRINT #2, : PRINT #2, "triangle": PRINT #2,
FOR i = 1 TO 13
FOR j = 1 TO 13
isTri = 0: v = n(i, j)
tr = INT(SQR(1 + 8 * v) + .5)
IF tr * tr = 1 + 8 * v THEN isTri = 1
IF isTri THEN
tr = (tr - 1) / 2
PRINT #2, USING "###"; tr;
bd$(i, j) = bd$(i, j) + "T" + RIGHT$(" " + LTRIM$(STR$(tr)), 2)
ELSE
PRINT #2, " .";
END IF
NEXT
PRINT #2, : PRINT #2,
NEXT
PRINT #2, : PRINT #2, "square": PRINT #2,
FOR i = 1 TO 13
FOR j = 1 TO 13
sq = n(i, j)
sr = INT(SQR(sq) + .5)
IF sr * sr = sq THEN
PRINT #2, USING "###"; sr;
bd$(i, j) = bd$(i, j) + "S" + RIGHT$(" " + LTRIM$(STR$(sr)), 2)
ELSE
PRINT #2, " .";
END IF
NEXT
PRINT #2, : PRINT #2,
NEXT
PRINT #2, : PRINT #2, "pentagonal": PRINT #2,
FOR i = 1 TO 13
FOR j = 1 TO 13
isPent = 0: v = n(i, j)
pent = INT((1 + SQR(1 + 24 * v)) / 6 + .5)
IF pent * (3 * pent - 1) = 2 * v THEN isPent = 1
IF isPent THEN
PRINT #2, USING "###"; pent;
bd$(i, j) = bd$(i, j) + "p" + RIGHT$(" " + LTRIM$(STR$(pent)), 2)
ELSE
PRINT #2, " .";
END IF
NEXT
PRINT #2, : PRINT #2,
NEXT
PRINT #2, : PRINT #2, "hexagonal": PRINT #2,
FOR i = 1 TO 13
FOR j = 1 TO 13
isHex = 0: v = n(i, j)
hex = INT((1 + SQR(1 + 8 * v)) / 4 + .5)
IF hex * (2 * hex - 1) = v THEN isHex = 1
IF isHex THEN
PRINT #2, USING "###"; hex;
bd$(i, j) = bd$(i, j) + "X" + RIGHT$(" " + LTRIM$(STR$(hex)), 2)
ELSE
PRINT #2, " .";
END IF
NEXT
PRINT #2, : PRINT #2,
NEXT
PRINT #2, : PRINT #2, "Fibonacci": PRINT #2,
FOR i = 1 TO 13
FOR j = 1 TO 13
fibn = n(i, j): fibNo = 0
FOR k = 1 TO 15
IF fib(k) = fibn THEN fibNo = k: EXIT FOR
NEXT
IF fibNo > 0 THEN
PRINT #2, USING "###"; fibNo;
bd$(i, j) = bd$(i, j) + "F" + RIGHT$(" " + LTRIM$(STR$(fibNo)), 2)
ELSE
PRINT #2, " .";
END IF
NEXT
PRINT #2, : PRINT #2,
NEXT
PRINT #2, : PRINT #2, "powers of 2": PRINT #2,
FOR i = 1 TO 13
FOR j = 1 TO 13
v = n(i, j)
p = INT(LOG(v) / LOG(2) + .5)
v1 = 1
FOR ii = 1 TO p
v1 = v1 * 2
NEXT
IF v1 = v THEN
PRINT #2, USING "###"; p;
bd$(i, j) = bd$(i, j) + "W" + RIGHT$(" " + LTRIM$(STR$(p)), 2)
ELSE
PRINT #2, " .";
END IF
NEXT
PRINT #2, : PRINT #2,
NEXT
FOR i = 1 TO 13
FOR j = 1 TO 13
IF LEN(bd$(i, j)) > 3 THEN
PRINT #2, LEFT$(bd$(i, j), 6);
ELSE
PRINT #2, " . ";
END IF
NEXT
PRINT #2,
FOR j = 1 TO 13
IF LEN(bd$(i, j)) > 3 THEN
PRINT #2, LEFT$(MID$(bd$(i, j), 7) + " ", 6);
ELSE
PRINT #2, " . ";
END IF
NEXT
PRINT #2,
NEXT
Edited on May 14, 2009, 3:53 pm
|
Posted by Charlie
on 2009-05-14 15:50:32 |