All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math
Rationally Integers (Posted on 2009-06-16) Difficulty: 3 of 5
Determine all possible triplet(s) (p,q,r) of positive rational numbers such that each of p+q+r, p-1 + q-1 + r-1 and p*q*r is an integer.

See The Solution Submitted by K Sengupta    
Rating: 5.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Some Thoughts some more via computer program Comment 2 of 2 |
(In reply to some obvious ones by Charlie)

 1  1  1
 1  2  2
 2  1  2
 2  2  1
 2  3  6
 2  4  4
 2  6  3
 3  2  6
 3  3  3
 3  6  2
 4  2  4
 4  4  2
 6  2  3
 6  3  2
from 
  10   for A=1 to 20
  20   for B=1 to 20
  25   if gcd(A,B)=1 then
  30   :for C=1 to 20
  40   :for D=1 to 20
  45   :if gcd(C,D)=1 then
  50   :for E=1 to 20
  60   :for F=1 to 20
  65   :if gcd(E,F)=1 then
  70     :P=A//B:Q=C//D:R=E//F
  80     :if P*Q*R=int(P*Q*R) then
  90       :if P+Q+R=int(P+Q+R) then
 100         :if 1//P+1//Q+1//R=int(1//P+1//Q+1//R) then
 110           :print P;Q;R
 115   :endif:endif:endif:endif
 120   :next
 130   :next:endif
 140   :next
 150   :next:endif
 160   :next
 170   :next

This covers all rational numbers with no integer above 20 in the numerator or the denominator.  Only integers were found for p, q and r.


  Posted by Charlie on 2009-06-16 12:46:42
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (3)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information