By subtracting 1 from the positive base N integer having the form XYXYXYZY, we get a perfect square. It is known that each of X, Y and Z represents a different base N digit from 0 to N-1, and X is nonzero.
What are the integer value(s) of N, with 3 ≤ N ≤ 16 for which this is possible?
Decimal
n x y z square square root
3 1 2 0 4096 64
5 3 2 0 276676 526
6 4 2 0 1247689 1117
7 5 2 0 4443664 2108
8 6 2 0 13315201 3649
9 7 2 0 34975396 5914
10 4 5 6 45454564 6742
10 8 2 0 82828201 9101
11 9 2 0 180418624 13432
12 10 2 0 366837409 19153
13 11 2 0 704053156 26534
14 12 2 0 1286585161 35869
15 13 2 0 2253970576 47476
16 14 2 0 3806519809 61697
17 15 2 0 6224894404 78898
18 16 2 0 9894081961 99469
19 17 2 0 15332382976 123824
20 18 2 0 23226064801 152401
21 19 2 0 34470378244 185662
22 20 2 0 50217672649 224093
23 21 2 0 71933385616 268204
23 21 19 20 74454762496 272864
24 22 2 0 101460723841 318529
25 23 2 0 141094891876 375626
DEFDBL A-Z
CLS
FOR n = 2 TO 25
psn(0) = 1
FOR i = 1 TO 7
psn(i) = n * psn(i - 1)
NEXT
FOR x = 1 TO n - 1
xpart = x * (psn(7) + psn(5) + psn(3))
FOR y = 0 TO n - 1
ypart = y * (psn(6) + psn(4) + psn(2) + 1)
IF y <> x THEN
FOR z = 0 TO n - 1
IF z <> y AND z <> x THEN
zpart = z * n
xyxyxyzy = xpart + ypart + zpart
sr = INT(SQR(xyxyxyzy - 1) + .5)
IF sr * sr + 1 = xyxyxyzy THEN
IF n <> nPrev THEN PRINT
PRINT USING "## ## ## ##"; n; x; y; z;
PRINT , xyxyxyzy - 1, SQR(xyxyxyzy - 1)
nPrev = n
END IF
END IF
NEXT
END IF
NEXT
NEXT
NEXT n
|
Posted by Charlie
on 2009-06-24 17:03:37 |