It is easy to derIve the irrational expression of sin18:
Starting with identity
sin 72° = 2 sin 36° cos 36° thru
cos 18° = 2 sin 36° cos 36°
we arrive to quadratic equation
with one relevant root
t= 1/4*(sqrt5-1) and t^2=1/8* (-sqrt5+3)
where t= sin 18°
Now, back to our problem:
Applying few trigonmetric trivial identities ,we get
Z=sin 54º-sin 18=sin18º*(2*(cos18º)^2t*cos36º-1)=
=t*(2-2t^2+1)
Z=1/4*(sqrt5-1)*(2-4*1/8* (-sqrt5+3) )=
2*Z=(sqrt5-1)*(sqrt5+1)/4=(5-1) /4=1
Z=1/2 QED