Determine the maximum value of a prime number x ≤ 999, such that Y has precisely 42 distinct positive integer divisors (including 1 and Y), where:
Y = x(x+1)2.
5 open "primdd.txt" for output as #2
10 while X<999
20 X=nxtprm(X)
30 Y=X*(X+1)^2
35 Ndiv=0
40 for D=1 to int(sqrt(Y))
50 if Y @ D=0 then inc Ndiv:if D*D<Y then inc Ndiv
60 next
70 if Ndiv=42 then print #2,X,Y
71 :for D=1 to int(sqrt(Y))
72 :if Y @ D=0 then print #2,D;:if D*D<Y then print #2,Y//D;:endif:endif
73 :next:print #2,:print #2,
80 wend
shows there are seven such prime values x under 999, the largest of which is 823.
The valid values of x and y, followed by the factors themselves, are (given in pairs that multiply to the given Y value):
23 13248
1 13248 2 6624 3 4416 4 3312 6 2208 8 1656 9 1472 12 1104 16 828 18 736 23 576 24 552 32 414 36 368 46 288 48 276 64 207 69 192 72 184 92 144 96 138
53 154548
1 154548 2 77274 3 51516 4 38637 6 25758 9 17172 12 12879 18 8586 27 5724 36 4293 53 2916 54 2862 81 1908 106 1458 108 1431 159 972 162 954 212 729 243 636 318 486 324 477
103 1114048
1 1114048 2 557024 4 278512 8 139256 13 85696 16 69628 26 42848 32 34814 52 21424 64 17407 103 10816 104 10712 169 6592 206 5408 208 5356 338 3296 412 2704 416 2678 676 1648 824 1352 832 1339
151 3488704
1 3488704 2 1744352 4 872176 8 436088 16 218044 19 183616 32 109022 38 91808 64 54511 76 45904 151 23104 152 22952 302 11552 304 11476 361 9664 604 5776 608 5738 722 4832 1208 2888 1216 2869 1444 2416
487 115976128
1 115976128 2 57988064 4 28994032 8 14497016 16 7248508 32 3624254 61 1901248 64 1812127 122 950624 244 475312 487 238144 488 237656 974 119072 976 118828 1948 59536 1952 59414 3721 31168 3896 29768 3904 29707 7442 15584 7792 14884
631 252036544
1 252036544 2 126018272 4 63009136 8 31504568 16 15752284 32 7876142 64 3938071 79 3190336 158 1595168 316 797584 631 399424 632 398792 1262 199712 1264 199396 2524 99856 2528 99698 5048 49928 5056 49849 6241 40384 10096 24964 12482 20192
823 558797248
1 558797248 2 279398624 4 139699312 8 69849656 16 34924828 32 17462414 64 8731207 103 5425216 206 2712608 412 1356304 823 678976 824 678152 1646 339488 1648 339076 3292 169744 3296 169538 6584 84872 6592 84769 10609 52672 13168 42436 21218 26336
823*(823+1)^2 = 558797248 = 2*2*2*2*2*2*103*103*823
7 choices of how many factors of 2 to include
3 choices of how many factors of 103 to include
2 choices of whether to include 823 as a factor in the potential divisor.
7*3*2 = 42.
|
Posted by Charlie
on 2010-06-17 13:42:21 |