Find a formula, involving
n, the number of e's present in the below function, for the derivative of :
Define
f(n,x) = e^f(n-1,x) if n > 0,
= x if n = 0.
Examples:
f(0,x) = x
f(1,x) = e^x
f(2,x) = e^(e^x)
Therefore,
f'(n,x) = e^[ f(0,x) + ... + f(n-1,x) ] if n > 0,
= 1 if n = 0.
Examples:
f'(0,x) = 1
f'(1,x) = e^x
f'(2,x) = e^[ x + e^x ]
Proof by mathematical induction on n:
f'(0,x) = d[x]/dx = 1
f'(1,x) = d[e^x]/dx = e^x = e^f(0,x)
Assume that
f'(k,x) = e^[ f(0,x) + ... + f(k-1,x) ] for k > 0.
f'(k+1,x) = d[e^f(k,x)]/dx = e^f(k,x)*d[f(k,x)]/dx
= e^f(k,x)*e^[ f(0,x) + ... + f(k-1,x) ]
= e^[ f(0,x) + ... + f(k,x) ]
QED
|
Posted by Bractals
on 2011-02-08 16:17:36 |