All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
Pythagoras Unconventional (Posted on 2011-02-10) Difficulty: 3 of 5

No Solution Yet Submitted by brianjn    
Rating: 4.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
complete list from Mathematica search | Comment 4 of 10 |
148 groupings with 0 Right Triangles:
{1,5,8,Sqrt[2],2 Sqrt[2],Sqrt[5]}
{1,3,5,Sqrt[3],Sqrt[5],Sqrt[7]}
{1,3,7,Sqrt[3],Sqrt[5],Sqrt[7]}
{1,5,7,Sqrt[3],Sqrt[5],Sqrt[7]}
{1,6,8,2 Sqrt[2],Sqrt[3],Sqrt[6]}
{2,3,4,Sqrt[2],2 Sqrt[2],Sqrt[3]}
{2,4,8,Sqrt[2],2 Sqrt[2],Sqrt[3]}
{3,4,8,Sqrt[2],2 Sqrt[2],Sqrt[3]}
{2,5,6,Sqrt[3],Sqrt[5],Sqrt[6]}
{3,5,6,Sqrt[2],Sqrt[5],Sqrt[6]}
{2,3,5,Sqrt[2],2 Sqrt[2],Sqrt[3]}
{2,5,8,Sqrt[2],2 Sqrt[2],Sqrt[3]}
{3,5,8,Sqrt[2],2 Sqrt[2],Sqrt[3]}
{3,5,8,Sqrt[2],2 Sqrt[2],Sqrt[5]}
{2,3,6,Sqrt[2],2 Sqrt[2],Sqrt[3]}
{2,6,8,Sqrt[2],2 Sqrt[2],Sqrt[3]}
{3,6,8,Sqrt[2],2 Sqrt[2],Sqrt[3]}
{2,6,8,2 Sqrt[2],Sqrt[3],Sqrt[6]}
{2,3,7,Sqrt[2],2 Sqrt[2],Sqrt[3]}
{2,7,8,Sqrt[2],2 Sqrt[2],Sqrt[3]}
{3,7,8,Sqrt[2],2 Sqrt[2],Sqrt[3]}
{2,3,9,Sqrt[2],2 Sqrt[2],Sqrt[3]}
{2,8,9,Sqrt[2],2 Sqrt[2],Sqrt[3]}
{3,8,9,Sqrt[2],2 Sqrt[2],Sqrt[3]}
{4,5,6,Sqrt[2],Sqrt[5],Sqrt[6]}
{2,4,5,Sqrt[2],2 Sqrt[2],Sqrt[5]}
{2,4,8,Sqrt[2],2 Sqrt[2],Sqrt[5]}
{4,5,8,Sqrt[2],2 Sqrt[2],Sqrt[5]}
{4,6,7,Sqrt[2],Sqrt[6],Sqrt[7]}
{2,4,7,Sqrt[2],2 Sqrt[2],Sqrt[7]}
{2,4,8,Sqrt[2],2 Sqrt[2],Sqrt[7]}
{4,7,8,Sqrt[2],2 Sqrt[2],Sqrt[7]}
{2,5,6,Sqrt[5],Sqrt[6],Sqrt[7]}
{5,6,7,Sqrt[2],Sqrt[5],Sqrt[6]}
{2,5,7,Sqrt[5],Sqrt[6],Sqrt[7]}
{2,6,7,Sqrt[5],Sqrt[6],Sqrt[7]}
{5,6,7,Sqrt[2],Sqrt[6],Sqrt[7]}
{2,5,6,Sqrt[2],2 Sqrt[2],Sqrt[5]}
{2,6,8,Sqrt[2],2 Sqrt[2],Sqrt[5]}
{2,5,6,2 Sqrt[2],Sqrt[5],Sqrt[6]}
{5,6,8,Sqrt[2],Sqrt[5],Sqrt[6]}
{2,5,8,2 Sqrt[2],Sqrt[5],Sqrt[6]}
{5,6,8,Sqrt[2],2 Sqrt[2],Sqrt[5]}
{2,6,8,2 Sqrt[2],Sqrt[5],Sqrt[6]}
{5,6,9,Sqrt[2],Sqrt[5],Sqrt[6]}
{2,5,7,Sqrt[2],2 Sqrt[2],Sqrt[5]}
{2,5,7,Sqrt[2],2 Sqrt[2],Sqrt[7]}
{2,5,8,Sqrt[2],2 Sqrt[2],Sqrt[7]}
{2,7,8,Sqrt[2],2 Sqrt[2],Sqrt[5]}
{2,5,7,2 Sqrt[2],Sqrt[5],Sqrt[7]}
{2,5,8,2 Sqrt[2],Sqrt[5],Sqrt[7]}
{5,7,8,Sqrt[2],2 Sqrt[2],Sqrt[5]}
{2,7,8,2 Sqrt[2],Sqrt[5],Sqrt[7]}
{5,7,8,Sqrt[2],2 Sqrt[2],Sqrt[7]}
{2,5,9,Sqrt[2],2 Sqrt[2],Sqrt[5]}
{2,8,9,Sqrt[2],2 Sqrt[2],Sqrt[5]}
{5,8,9,Sqrt[2],2 Sqrt[2],Sqrt[5]}
{2,6,7,Sqrt[2],2 Sqrt[2],Sqrt[7]}
{2,6,8,Sqrt[2],2 Sqrt[2],Sqrt[7]}
{2,6,7,2 Sqrt[2],Sqrt[6],Sqrt[7]}
{6,7,8,Sqrt[2],Sqrt[6],Sqrt[7]}
{2,6,8,2 Sqrt[2],Sqrt[6],Sqrt[7]}
{2,7,8,2 Sqrt[2],Sqrt[6],Sqrt[7]}
{6,7,8,Sqrt[2],2 Sqrt[2],Sqrt[7]}
{6,7,9,Sqrt[2],Sqrt[6],Sqrt[7]}
{2,7,9,Sqrt[2],2 Sqrt[2],Sqrt[7]}
{2,8,9,Sqrt[2],2 Sqrt[2],Sqrt[7]}
{7,8,9,Sqrt[2],2 Sqrt[2],Sqrt[7]}
{4,5,6,Sqrt[3],Sqrt[5],Sqrt[6]}
{4,5,7,Sqrt[3],Sqrt[5],Sqrt[7]}
{4,6,7,Sqrt[3],Sqrt[6],Sqrt[7]}
{4,6,8,2 Sqrt[2],Sqrt[3],Sqrt[6]}
{4,7,8,2 Sqrt[2],Sqrt[3],Sqrt[7]}
{3,5,6,Sqrt[3],Sqrt[5],Sqrt[7]}
{3,6,7,Sqrt[3],Sqrt[5],Sqrt[7]}
{3,5,6,Sqrt[5],Sqrt[6],Sqrt[7]}
{5,6,7,Sqrt[3],Sqrt[5],Sqrt[6]}
{3,5,7,Sqrt[5],Sqrt[6],Sqrt[7]}
{5,6,7,Sqrt[3],Sqrt[5],Sqrt[7]}
{3,6,7,Sqrt[5],Sqrt[6],Sqrt[7]}
{5,6,7,Sqrt[3],Sqrt[6],Sqrt[7]}
{3,5,6,2 Sqrt[2],Sqrt[5],Sqrt[6]}
{5,6,8,Sqrt[3],Sqrt[5],Sqrt[6]}
{3,5,8,2 Sqrt[2],Sqrt[5],Sqrt[6]}
{3,6,8,2 Sqrt[2],Sqrt[5],Sqrt[6]}
{5,6,8,2 Sqrt[2],Sqrt[3],Sqrt[6]}
{5,6,9,Sqrt[3],Sqrt[5],Sqrt[6]}
{3,5,8,Sqrt[3],Sqrt[5],Sqrt[7]}
{3,5,7,2 Sqrt[2],Sqrt[3],Sqrt[7]}
{3,7,8,Sqrt[3],Sqrt[5],Sqrt[7]}
{3,5,8,2 Sqrt[2],Sqrt[3],Sqrt[7]}
{3,5,7,2 Sqrt[2],Sqrt[5],Sqrt[7]}
{5,7,8,Sqrt[3],Sqrt[5],Sqrt[7]}
{3,5,8,2 Sqrt[2],Sqrt[5],Sqrt[7]}
{3,7,8,2 Sqrt[2],Sqrt[5],Sqrt[7]}
{5,7,8,2 Sqrt[2],Sqrt[3],Sqrt[7]}
{3,5,9,Sqrt[3],Sqrt[5],Sqrt[7]}
{3,7,9,Sqrt[3],Sqrt[5],Sqrt[7]}
{5,7,9,Sqrt[3],Sqrt[5],Sqrt[7]}
{3,6,7,2 Sqrt[2],Sqrt[3],Sqrt[7]}
{3,6,8,2 Sqrt[2],Sqrt[3],Sqrt[7]}
{3,6,7,2 Sqrt[2],Sqrt[6],Sqrt[7]}
{6,7,8,Sqrt[3],Sqrt[6],Sqrt[7]}
{3,6,8,2 Sqrt[2],Sqrt[6],Sqrt[7]}
{6,7,8,2 Sqrt[2],Sqrt[3],Sqrt[6]}
{3,7,8,2 Sqrt[2],Sqrt[6],Sqrt[7]}
{6,7,8,2 Sqrt[2],Sqrt[3],Sqrt[7]}
{6,7,9,Sqrt[3],Sqrt[6],Sqrt[7]}
{6,8,9,2 Sqrt[2],Sqrt[3],Sqrt[6]}
{3,7,9,2 Sqrt[2],Sqrt[3],Sqrt[7]}
{3,8,9,2 Sqrt[2],Sqrt[3],Sqrt[7]}
{7,8,9,2 Sqrt[2],Sqrt[3],Sqrt[7]}
{4,5,6,Sqrt[5],Sqrt[6],Sqrt[7]}
{4,5,7,Sqrt[5],Sqrt[6],Sqrt[7]}
{4,6,7,Sqrt[5],Sqrt[6],Sqrt[7]}
{4,5,6,2 Sqrt[2],Sqrt[5],Sqrt[6]}
{4,5,8,2 Sqrt[2],Sqrt[5],Sqrt[6]}
{4,6,8,2 Sqrt[2],Sqrt[5],Sqrt[6]}
{4,5,7,2 Sqrt[2],Sqrt[5],Sqrt[7]}
{4,5,8,2 Sqrt[2],Sqrt[5],Sqrt[7]}
{4,7,8,2 Sqrt[2],Sqrt[5],Sqrt[7]}
{4,6,7,2 Sqrt[2],Sqrt[6],Sqrt[7]}
{4,6,8,2 Sqrt[2],Sqrt[6],Sqrt[7]}
{4,7,8,2 Sqrt[2],Sqrt[6],Sqrt[7]}
{5,6,7,2 Sqrt[2],Sqrt[5],Sqrt[6]}
{5,6,8,Sqrt[5],Sqrt[6],Sqrt[7]}
{5,6,7,2 Sqrt[2],Sqrt[5],Sqrt[7]}
{5,7,8,Sqrt[5],Sqrt[6],Sqrt[7]}
{5,6,8,2 Sqrt[2],Sqrt[5],Sqrt[7]}
{5,7,8,2 Sqrt[2],Sqrt[5],Sqrt[6]}
{5,6,7,2 Sqrt[2],Sqrt[6],Sqrt[7]}
{6,7,8,Sqrt[5],Sqrt[6],Sqrt[7]}
{5,6,8,2 Sqrt[2],Sqrt[6],Sqrt[7]}
{6,7,8,2 Sqrt[2],Sqrt[5],Sqrt[6]}
{5,7,8,2 Sqrt[2],Sqrt[6],Sqrt[7]}
{6,7,8,2 Sqrt[2],Sqrt[5],Sqrt[7]}
{5,6,9,Sqrt[5],Sqrt[6],Sqrt[7]}
{5,7,9,Sqrt[5],Sqrt[6],Sqrt[7]}
{6,7,9,Sqrt[5],Sqrt[6],Sqrt[7]}
{5,6,9,2 Sqrt[2],Sqrt[5],Sqrt[6]}
{5,8,9,2 Sqrt[2],Sqrt[5],Sqrt[6]}
{6,8,9,2 Sqrt[2],Sqrt[5],Sqrt[6]}
{5,7,9,2 Sqrt[2],Sqrt[5],Sqrt[7]}
{5,8,9,2 Sqrt[2],Sqrt[5],Sqrt[7]}
{7,8,9,2 Sqrt[2],Sqrt[5],Sqrt[7]}
{6,7,9,2 Sqrt[2],Sqrt[6],Sqrt[7]}
{6,8,9,2 Sqrt[2],Sqrt[6],Sqrt[7]}
{7,8,9,2 Sqrt[2],Sqrt[6],Sqrt[7]}
129 groupings with 1 Right Triangles:
{1,5,6,Sqrt[2],Sqrt[5],Sqrt[6]}
{1,5,7,Sqrt[2],Sqrt[5],Sqrt[7]}
{1,2,5,Sqrt[2],2 Sqrt[2],Sqrt[5]}
{1,2,8,Sqrt[2],2 Sqrt[2],Sqrt[5]}
{1,6,7,Sqrt[2],Sqrt[6],Sqrt[7]}
{1,6,8,Sqrt[2],2 Sqrt[2],Sqrt[6]}
{1,2,7,Sqrt[2],2 Sqrt[2],Sqrt[7]}
{1,2,8,Sqrt[2],2 Sqrt[2],Sqrt[7]}
{1,7,8,Sqrt[2],2 Sqrt[2],Sqrt[7]}
{1,5,6,Sqrt[3],Sqrt[5],Sqrt[6]}
{1,5,8,2 Sqrt[2],Sqrt[3],Sqrt[5]}
{1,6,7,Sqrt[3],Sqrt[6],Sqrt[7]}
{1,7,8,2 Sqrt[2],Sqrt[3],Sqrt[7]}
{1,5,6,2 Sqrt[2],Sqrt[5],Sqrt[6]}
{1,5,8,2 Sqrt[2],Sqrt[5],Sqrt[6]}
{1,6,8,2 Sqrt[2],Sqrt[5],Sqrt[6]}
{1,5,7,2 Sqrt[2],Sqrt[5],Sqrt[7]}
{1,5,8,2 Sqrt[2],Sqrt[5],Sqrt[7]}
{1,7,8,2 Sqrt[2],Sqrt[5],Sqrt[7]}
{2,4,5,Sqrt[2],Sqrt[3],Sqrt[5]}
{2,4,6,Sqrt[2],Sqrt[3],Sqrt[6]}
{3,4,6,Sqrt[2],Sqrt[3],Sqrt[6]}
{2,4,7,Sqrt[2],Sqrt[3],Sqrt[7]}
{2,5,6,Sqrt[2],Sqrt[3],Sqrt[5]}
{2,5,6,Sqrt[2],Sqrt[3],Sqrt[6]}
{3,5,6,Sqrt[2],Sqrt[3],Sqrt[5]}
{3,5,6,Sqrt[2],Sqrt[3],Sqrt[6]}
{2,5,7,Sqrt[2],Sqrt[3],Sqrt[5]}
{2,5,7,Sqrt[2],Sqrt[3],Sqrt[7]}
{3,5,7,Sqrt[2],Sqrt[3],Sqrt[5]}
{3,5,7,Sqrt[2],Sqrt[3],Sqrt[7]}
{2,5,7,Sqrt[3],Sqrt[5],Sqrt[7]}
{2,3,5,Sqrt[2],2 Sqrt[2],Sqrt[5]}
{2,5,8,Sqrt[2],Sqrt[3],Sqrt[5]}
{2,3,8,Sqrt[2],2 Sqrt[2],Sqrt[5]}
{3,5,8,Sqrt[2],Sqrt[3],Sqrt[5]}
{2,5,8,2 Sqrt[2],Sqrt[3],Sqrt[5]}
{2,5,9,Sqrt[2],Sqrt[3],Sqrt[5]}
{3,5,9,Sqrt[2],Sqrt[3],Sqrt[5]}
{2,6,7,Sqrt[2],Sqrt[3],Sqrt[6]}
{2,6,7,Sqrt[2],Sqrt[3],Sqrt[7]}
{3,6,7,Sqrt[2],Sqrt[3],Sqrt[6]}
{3,6,7,Sqrt[2],Sqrt[3],Sqrt[7]}
{2,6,7,Sqrt[3],Sqrt[6],Sqrt[7]}
{3,6,7,Sqrt[2],Sqrt[6],Sqrt[7]}
{2,6,8,Sqrt[2],Sqrt[3],Sqrt[6]}
{2,3,6,2 Sqrt[2],Sqrt[3],Sqrt[6]}
{3,6,8,Sqrt[2],Sqrt[3],Sqrt[6]}
{2,3,8,2 Sqrt[2],Sqrt[3],Sqrt[6]}
{3,6,8,Sqrt[2],2 Sqrt[2],Sqrt[6]}
{2,6,9,Sqrt[2],Sqrt[3],Sqrt[6]}
{3,6,9,Sqrt[2],Sqrt[3],Sqrt[6]}
{2,3,7,Sqrt[2],2 Sqrt[2],Sqrt[7]}
{2,7,8,Sqrt[2],Sqrt[3],Sqrt[7]}
{2,3,8,Sqrt[2],2 Sqrt[2],Sqrt[7]}
{2,3,7,2 Sqrt[2],Sqrt[3],Sqrt[7]}
{3,7,8,Sqrt[2],Sqrt[3],Sqrt[7]}
{2,3,8,2 Sqrt[2],Sqrt[3],Sqrt[7]}
{2,7,8,2 Sqrt[2],Sqrt[3],Sqrt[7]}
{3,7,8,Sqrt[2],2 Sqrt[2],Sqrt[7]}
{2,7,9,Sqrt[2],Sqrt[3],Sqrt[7]}
{3,7,9,Sqrt[2],Sqrt[3],Sqrt[7]}
{2,4,5,Sqrt[2],Sqrt[5],Sqrt[6]}
{2,4,6,Sqrt[2],Sqrt[5],Sqrt[6]}
{2,4,5,Sqrt[2],Sqrt[5],Sqrt[7]}
{2,4,7,Sqrt[2],Sqrt[5],Sqrt[7]}
{4,5,7,Sqrt[2],Sqrt[5],Sqrt[7]}
{2,4,6,Sqrt[2],Sqrt[6],Sqrt[7]}
{2,4,7,Sqrt[2],Sqrt[6],Sqrt[7]}
{4,6,8,Sqrt[2],2 Sqrt[2],Sqrt[6]}
{2,5,6,Sqrt[2],Sqrt[5],Sqrt[7]}
{2,5,7,Sqrt[2],Sqrt[5],Sqrt[6]}
{2,5,6,Sqrt[2],Sqrt[6],Sqrt[7]}
{2,6,7,Sqrt[2],Sqrt[5],Sqrt[6]}
{2,5,7,Sqrt[2],Sqrt[6],Sqrt[7]}
{2,6,7,Sqrt[2],Sqrt[5],Sqrt[7]}
{5,6,7,Sqrt[2],Sqrt[5],Sqrt[7]}
{2,5,8,Sqrt[2],Sqrt[5],Sqrt[6]}
{2,6,8,Sqrt[2],Sqrt[5],Sqrt[6]}
{5,6,8,Sqrt[2],2 Sqrt[2],Sqrt[6]}
{2,5,9,Sqrt[2],Sqrt[5],Sqrt[6]}
{2,6,9,Sqrt[2],Sqrt[5],Sqrt[6]}
{2,5,8,Sqrt[2],Sqrt[5],Sqrt[7]}
{2,7,8,Sqrt[2],Sqrt[5],Sqrt[7]}
{5,7,8,Sqrt[2],Sqrt[5],Sqrt[7]}
{2,5,9,Sqrt[2],Sqrt[5],Sqrt[7]}
{2,7,9,Sqrt[2],Sqrt[5],Sqrt[7]}
{5,7,9,Sqrt[2],Sqrt[5],Sqrt[7]}
{2,6,8,Sqrt[2],Sqrt[6],Sqrt[7]}
{2,7,8,Sqrt[2],Sqrt[6],Sqrt[7]}
{6,7,8,Sqrt[2],2 Sqrt[2],Sqrt[6]}
{2,6,9,Sqrt[2],Sqrt[6],Sqrt[7]}
{2,7,9,Sqrt[2],Sqrt[6],Sqrt[7]}
{6,8,9,Sqrt[2],2 Sqrt[2],Sqrt[6]}
{3,4,6,Sqrt[3],Sqrt[5],Sqrt[6]}
{3,4,7,Sqrt[3],Sqrt[5],Sqrt[7]}
{3,4,8,2 Sqrt[2],Sqrt[3],Sqrt[5]}
{4,5,8,2 Sqrt[2],Sqrt[3],Sqrt[5]}
{3,4,6,2 Sqrt[2],Sqrt[3],Sqrt[6]}
{3,4,8,2 Sqrt[2],Sqrt[3],Sqrt[6]}
{3,4,7,2 Sqrt[2],Sqrt[3],Sqrt[7]}
{3,4,8,2 Sqrt[2],Sqrt[3],Sqrt[7]}
{3,5,7,Sqrt[3],Sqrt[5],Sqrt[6]}
{3,5,6,Sqrt[3],Sqrt[6],Sqrt[7]}
{3,6,7,Sqrt[3],Sqrt[5],Sqrt[6]}
{3,5,7,Sqrt[3],Sqrt[6],Sqrt[7]}
{3,5,6,2 Sqrt[2],Sqrt[3],Sqrt[5]}
{3,5,8,Sqrt[3],Sqrt[5],Sqrt[6]}
{3,5,6,2 Sqrt[2],Sqrt[3],Sqrt[6]}
{3,6,8,Sqrt[3],Sqrt[5],Sqrt[6]}
{3,5,8,2 Sqrt[2],Sqrt[3],Sqrt[6]}
{3,6,8,2 Sqrt[2],Sqrt[3],Sqrt[5]}
{5,6,8,2 Sqrt[2],Sqrt[3],Sqrt[5]}
{3,5,9,Sqrt[3],Sqrt[5],Sqrt[6]}
{3,6,9,Sqrt[3],Sqrt[5],Sqrt[6]}
{3,5,7,2 Sqrt[2],Sqrt[3],Sqrt[5]}
{3,7,8,2 Sqrt[2],Sqrt[3],Sqrt[5]}
{5,7,8,2 Sqrt[2],Sqrt[3],Sqrt[5]}
{3,5,9,2 Sqrt[2],Sqrt[3],Sqrt[5]}
{3,8,9,2 Sqrt[2],Sqrt[3],Sqrt[5]}
{5,8,9,2 Sqrt[2],Sqrt[3],Sqrt[5]}
{3,6,7,2 Sqrt[2],Sqrt[3],Sqrt[6]}
{3,6,8,Sqrt[3],Sqrt[6],Sqrt[7]}
{3,7,8,Sqrt[3],Sqrt[6],Sqrt[7]}
{3,7,8,2 Sqrt[2],Sqrt[3],Sqrt[6]}
{3,6,9,Sqrt[3],Sqrt[6],Sqrt[7]}
{3,7,9,Sqrt[3],Sqrt[6],Sqrt[7]}
{3,6,9,2 Sqrt[2],Sqrt[3],Sqrt[6]}
{3,8,9,2 Sqrt[2],Sqrt[3],Sqrt[6]}
71 groupings with 2 Right Triangles:
{1,3,5,Sqrt[2],Sqrt[3],Sqrt[5]}
{1,3,6,Sqrt[2],Sqrt[3],Sqrt[6]}
{1,3,7,Sqrt[2],Sqrt[3],Sqrt[7]}
{1,2,8,Sqrt[2],2 Sqrt[2],Sqrt[3]}
{1,3,8,Sqrt[2],2 Sqrt[2],Sqrt[3]}
{1,2,5,Sqrt[2],Sqrt[5],Sqrt[7]}
{1,2,7,Sqrt[2],Sqrt[5],Sqrt[7]}
{1,2,6,Sqrt[2],Sqrt[6],Sqrt[7]}
{1,2,7,Sqrt[2],Sqrt[6],Sqrt[7]}
{1,2,6,Sqrt[2],2 Sqrt[2],Sqrt[6]}
{1,2,8,Sqrt[2],2 Sqrt[2],Sqrt[6]}
{1,3,5,Sqrt[3],Sqrt[5],Sqrt[6]}
{1,3,6,Sqrt[3],Sqrt[5],Sqrt[6]}
{1,3,5,2 Sqrt[2],Sqrt[3],Sqrt[5]}
{1,3,8,2 Sqrt[2],Sqrt[3],Sqrt[5]}
{1,3,6,Sqrt[3],Sqrt[6],Sqrt[7]}
{1,3,7,Sqrt[3],Sqrt[6],Sqrt[7]}
{1,3,6,2 Sqrt[2],Sqrt[3],Sqrt[6]}
{1,3,8,2 Sqrt[2],Sqrt[3],Sqrt[6]}
{1,3,7,2 Sqrt[2],Sqrt[3],Sqrt[7]}
{1,3,8,2 Sqrt[2],Sqrt[3],Sqrt[7]}
{1,5,6,Sqrt[5],Sqrt[6],Sqrt[7]}
{1,5,7,Sqrt[5],Sqrt[6],Sqrt[7]}
{1,6,7,Sqrt[5],Sqrt[6],Sqrt[7]}
{1,6,7,2 Sqrt[2],Sqrt[6],Sqrt[7]}
{1,6,8,2 Sqrt[2],Sqrt[6],Sqrt[7]}
{1,7,8,2 Sqrt[2],Sqrt[6],Sqrt[7]}
{2,3,4,Sqrt[2],Sqrt[3],Sqrt[5]}
{3,4,5,Sqrt[2],Sqrt[3],Sqrt[5]}
{2,3,4,Sqrt[2],Sqrt[3],Sqrt[6]}
{3,4,7,Sqrt[2],Sqrt[3],Sqrt[7]}
{2,3,5,Sqrt[2],Sqrt[3],Sqrt[6]}
{2,3,6,Sqrt[2],Sqrt[3],Sqrt[5]}
{2,3,5,Sqrt[2],Sqrt[5],Sqrt[6]}
{2,3,6,Sqrt[2],Sqrt[5],Sqrt[6]}
{2,3,5,Sqrt[3],Sqrt[5],Sqrt[6]}
{2,3,6,Sqrt[3],Sqrt[5],Sqrt[6]}
{2,3,5,Sqrt[2],Sqrt[3],Sqrt[7]}
{2,3,7,Sqrt[2],Sqrt[3],Sqrt[5]}
{2,3,5,Sqrt[3],Sqrt[5],Sqrt[7]}
{2,3,7,Sqrt[3],Sqrt[5],Sqrt[7]}
{3,5,7,Sqrt[2],Sqrt[5],Sqrt[7]}
{2,3,8,Sqrt[2],Sqrt[3],Sqrt[5]}
{2,3,5,2 Sqrt[2],Sqrt[3],Sqrt[5]}
{2,3,8,2 Sqrt[2],Sqrt[3],Sqrt[5]}
{2,3,9,Sqrt[2],Sqrt[3],Sqrt[5]}
{2,3,6,Sqrt[2],Sqrt[3],Sqrt[7]}
{2,3,7,Sqrt[2],Sqrt[3],Sqrt[6]}
{2,3,6,Sqrt[2],Sqrt[6],Sqrt[7]}
{2,3,7,Sqrt[2],Sqrt[6],Sqrt[7]}
{2,3,6,Sqrt[3],Sqrt[6],Sqrt[7]}
{2,3,7,Sqrt[3],Sqrt[6],Sqrt[7]}
{2,3,8,Sqrt[2],Sqrt[3],Sqrt[6]}
{2,3,6,Sqrt[2],2 Sqrt[2],Sqrt[6]}
{2,3,8,Sqrt[2],2 Sqrt[2],Sqrt[6]}
{2,3,9,Sqrt[2],Sqrt[3],Sqrt[6]}
{2,3,8,Sqrt[2],Sqrt[3],Sqrt[7]}
{2,3,9,Sqrt[2],Sqrt[3],Sqrt[7]}
{2,4,6,Sqrt[2],2 Sqrt[2],Sqrt[6]}
{2,4,8,Sqrt[2],2 Sqrt[2],Sqrt[6]}
{2,5,6,Sqrt[2],2 Sqrt[2],Sqrt[6]}
{2,5,8,Sqrt[2],2 Sqrt[2],Sqrt[6]}
{2,6,7,Sqrt[2],2 Sqrt[2],Sqrt[6]}
{2,7,8,Sqrt[2],2 Sqrt[2],Sqrt[6]}
{2,6,9,Sqrt[2],2 Sqrt[2],Sqrt[6]}
{2,8,9,Sqrt[2],2 Sqrt[2],Sqrt[6]}
{3,4,5,Sqrt[3],Sqrt[5],Sqrt[6]}
{3,4,5,Sqrt[3],Sqrt[5],Sqrt[7]}
{3,4,5,2 Sqrt[2],Sqrt[3],Sqrt[5]}
{3,4,6,Sqrt[3],Sqrt[6],Sqrt[7]}
{3,4,7,Sqrt[3],Sqrt[6],Sqrt[7]}
8 groupings with 3 Right Triangles:
{1,2,6,Sqrt[2],Sqrt[3],Sqrt[6]}
{1,2,7,Sqrt[2],Sqrt[3],Sqrt[7]}
{1,2,3,Sqrt[2],2 Sqrt[2],Sqrt[3]}
{1,2,5,Sqrt[2],Sqrt[5],Sqrt[6]}
{1,2,6,Sqrt[2],Sqrt[5],Sqrt[6]}
{2,3,4,Sqrt[2],Sqrt[3],Sqrt[7]}
{2,3,5,Sqrt[2],Sqrt[5],Sqrt[7]}
{2,3,7,Sqrt[2],Sqrt[5],Sqrt[7]}
3 groupings with 4 Right Triangles:
{1,2,5,Sqrt[2],Sqrt[3],Sqrt[5]}
{1,2,3,Sqrt[2],Sqrt[3],Sqrt[6]}
{1,2,3,Sqrt[2],Sqrt[3],Sqrt[7]}
1 groupings with 5 Right Triangles:
{1,2,3,Sqrt[2],Sqrt[3],Sqrt[5]}
No groupings with 6 Right Triangles.
No groupings with 7 Right Triangles.
No groupings with 8 Right Triangles.
No groupings with 9 Right Triangles.
No groupings with 10 Right Triangles.
No groupings with 11 Right Triangles.
No groupings with 12 Right Triangles.
No groupings with 13 Right Triangles.
No groupings with 14 Right Triangles.
No groupings with 15 Right Triangles.
No groupings with 16 Right Triangles.
No groupings with 17 Right Triangles.
No groupings with 18 Right Triangles.
No groupings with 19 Right Triangles.
No groupings with 20 Right Triangles.
  Posted by Daniel on 2011-02-10 14:14:05
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (0)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information