Home > Just Math
Two happy ends (Posted on 2011-03-07) |
|
Consider a series of numbers, defined as follows: Starting with any natural number, each member is a sum of the squares of the previous member`s digits.
Prove : The series always reaches either a stuck-on-one sequence: 1,1,1… or a closed loop of the following 8 numbers: 145,42,20,4,16,37,58,89, ...
Ex1: 12345,55,50,25,29,85,89,145….. etc
Ex2: 66,72,53,34,25,29,85,89,145…
Ex3: 91,10,1,1,1…..
How the numbers get there
|
| Comment 9 of 11 |
|
(In reply to re(6): NOT enough by Gamer by Charlie)
In the light of my previous post, here's the route to one of the inevitable loops for the numbers through 243:
1 1 2 4 3 9 81 65 61 37 4 16 5 25 29 85 89 6 36 45 41 17 50 25 29 85 89 7 49 97 130 10 1 8 64 52 29 85 89 9 81 65 61 37 10 1 11 2 4 12 5 25 29 85 89 13 10 1 14 17 50 25 29 85 89 15 26 40 16 16 37 17 50 25 29 85 89 18 65 61 37 19 82 68 100 1 20 4 21 5 25 29 85 89 22 8 64 52 29 85 89 23 13 10 1 24 20 25 29 85 89 26 40 16 27 53 34 25 29 85 89 28 68 100 1 29 85 89 30 9 81 65 61 37 31 10 1 32 13 10 1 33 18 65 61 37 34 25 29 85 89 35 34 25 29 85 89 36 45 41 17 50 25 29 85 89 37 58 38 73 58 39 90 81 65 61 37 40 16 41 17 50 25 29 85 89 42 20 43 25 29 85 89 44 32 13 10 1 45 41 17 50 25 29 85 89 46 52 29 85 89 47 65 61 37 48 80 64 52 29 85 89 49 97 130 10 1 50 25 29 85 89 51 26 40 16 52 29 85 89 53 34 25 29 85 89 54 41 17 50 25 29 85 89 55 50 25 29 85 89 56 61 37 57 74 65 61 37 58 89 59 106 37 60 36 45 41 17 50 25 29 85 89 61 37 62 40 16 63 45 41 17 50 25 29 85 89 64 52 29 85 89 65 61 37 66 72 53 34 25 29 85 89 67 85 89 68 100 1 69 117 51 26 40 16 70 49 97 130 10 1 71 50 25 29 85 89 72 53 34 25 29 85 89 73 58 74 65 61 37 75 74 65 61 37 76 85 89 77 98 145 78 113 11 2 4 79 130 10 1 80 64 52 29 85 89 81 65 61 37 82 68 100 1 83 73 58 84 80 64 52 29 85 89 85 89 86 100 1 87 113 11 2 4 88 128 69 117 51 26 40 16 89 145 90 81 65 61 37 91 82 68 100 1 92 85 89 93 90 81 65 61 37 94 97 130 10 1 95 106 37 96 117 51 26 40 16 97 130 10 1 98 145 99 162 41 17 50 25 29 85 89 100 1 101 2 4 102 5 25 29 85 89 103 10 1 104 17 50 25 29 85 89 105 26 40 16 106 37 107 50 25 29 85 89 108 65 61 37 109 82 68 100 1 110 2 4 111 3 9 81 65 61 37 112 6 36 45 41 17 50 25 29 85 89 113 11 2 4 114 18 65 61 37 115 27 53 34 25 29 85 89 116 38 73 58 117 51 26 40 16 118 66 72 53 34 25 29 85 89 119 83 73 58 120 5 25 29 85 89 121 6 36 45 41 17 50 25 29 85 89 122 9 81 65 61 37 123 14 17 50 25 29 85 89 124 21 5 25 29 85 89 125 30 9 81 65 61 37 126 41 17 50 25 29 85 89 127 54 41 17 50 25 29 85 89 128 69 117 51 26 40 16 129 86 100 1 130 10 1 131 11 2 4 132 14 17 50 25 29 85 89 133 19 82 68 100 1 134 26 40 16 135 35 34 25 29 85 89 136 46 52 29 85 89 137 59 106 37 138 74 65 61 37 139 91 82 68 100 1 140 17 50 25 29 85 89 141 18 65 61 37 142 21 5 25 29 85 89 143 26 40 16 144 33 18 65 61 37 145 42 146 53 34 25 29 85 89 147 66 72 53 34 25 29 85 89 148 81 65 61 37 149 98 145 150 26 40 16 151 27 53 34 25 29 85 89 152 30 9 81 65 61 37 153 35 34 25 29 85 89 154 42 155 51 26 40 16 156 62 40 16 157 75 74 65 61 37 158 90 81 65 61 37 159 107 50 25 29 85 89 160 37 161 38 73 58 162 41 17 50 25 29 85 89 163 46 52 29 85 89 164 53 34 25 29 85 89 165 62 40 16 166 73 58 167 86 100 1 168 101 2 4 169 118 66 72 53 34 25 29 85 89 170 50 25 29 85 89 171 51 26 40 16 172 54 41 17 50 25 29 85 89 173 59 106 37 174 66 72 53 34 25 29 85 89 175 75 74 65 61 37 176 86 100 1 177 99 162 41 17 50 25 29 85 89 178 114 18 65 61 37 179 131 11 2 4 180 65 61 37 181 66 72 53 34 25 29 85 89 182 69 117 51 26 40 16 183 74 65 61 37 184 81 65 61 37 185 90 81 65 61 37 186 101 2 4 187 114 18 65 61 37 188 129 86 100 1 189 146 53 34 25 29 85 89 190 82 68 100 1 191 83 73 58 192 86 100 1 193 91 82 68 100 1 194 98 145 195 107 50 25 29 85 89 196 118 66 72 53 34 25 29 85 89 197 131 11 2 4 198 146 53 34 25 29 85 89 199 163 46 52 29 85 89 200 4 201 5 25 29 85 89 202 8 64 52 29 85 89 203 13 10 1 204 20 205 29 85 89 206 40 16 207 53 34 25 29 85 89 208 68 100 1 209 85 89 210 5 25 29 85 89 211 6 36 45 41 17 50 25 29 85 89 212 9 81 65 61 37 213 14 17 50 25 29 85 89 214 21 5 25 29 85 89 215 30 9 81 65 61 37 216 41 17 50 25 29 85 89 217 54 41 17 50 25 29 85 89 218 69 117 51 26 40 16 219 86 100 1 220 8 64 52 29 85 89 221 9 81 65 61 37 222 12 5 25 29 85 89 223 17 50 25 29 85 89 224 24 20 225 33 18 65 61 37 226 44 32 13 10 1 227 57 74 65 61 37 228 72 53 34 25 29 85 89 229 89 230 13 10 1 231 14 17 50 25 29 85 89 232 17 50 25 29 85 89 233 22 8 64 52 29 85 89 234 29 85 89 235 38 73 58 236 49 97 130 10 1 237 62 40 16 238 77 98 145 239 94 97 130 10 1 240 20 241 21 5 25 29 85 89 242 24 20 243 29 85 89
|
Posted by Charlie
on 2011-03-09 15:39:48 |
|
|
Please log in:
Forums (1)
Newest Problems
Random Problem
FAQ |
About This Site
Site Statistics
New Comments (6)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On
Chatterbox:
|