lhs=1; prev=0
for n= 1 to 99999
{
lhs=lhs*2
if lhs mod 167 == 88 and lhs mod 83 ==70
{
l=n*log[2]
diff=n-prev
prev=n
println ["$n $l $diff"]
}
}
finds only two that are below 10,000: 2004 and 8810, leading to a 604-digit number and to a 2653-digit number as their respective powers of 2.
Those two values of n are separated by 6806, and apparently every 6806th value of n thereafter satisfies the conditions as given in this table:
n log(2^n) dn
2004 603.26411131061822422 2004
8810 2652.0742617996739298 6806
15616 4700.8844122887296354 6806
22422 6749.694562777785341 6806
29228 8798.5047132668410466 6806
36034 10847.314863755896752 6806
42840 12896.125014244952458 6806
49646 14944.935164734008163 6806
56452 16993.745315223063869 6806
63258 19042.555465712119575 6806
70064 21091.36561620117528 6806
76870 23140.175766690230986 6806
83676 25188.985917179286692 6806
90482 27237.796067668342397 6806
97288 29286.606218157398103 6806
the ceiling of the common log can be used to show the number of digits in the power of 2, and the fractional part allowing view of the beginning of the number by taking the antilog.
|
Posted by Charlie
on 2011-04-24 14:28:41 |