All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math
Closed Closure (Posted on 2011-04-28) Difficulty: 3 of 5
Determine, with proof, the closed form of following expression in terms of n

Σj=1 to n  j2*(j+1)*(nCj)

See The Solution Submitted by K Sengupta    
Rating: 5.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution Solution Comment 3 of 3 |
Define a function of x and n as follows:

       F    = Sum(j=1 to n) of  xj+1 nCj                     (1)

            = x[Sum(j=1 to n) of xj nCj ]

            =x[[Sum(j=0 to n) of xj nCj ]  -  1]

            = x[(1 + x)n - 1]                                    (2)

Using D(y) to denote the derivative of y wrt x,

(1) gives           D(D(F)) = Sum(j=1 to n) of j(j + 1)xj-1 nCj

so         x*D(D(F)) = Sum(j=1 to n) of j(j + 1)xj nCj

so         D(x*D(D(F))) = Sum(j=1 to n) of j2(j + 1)xj-1 nCj

Using (2) and switching sides now gives:

Sum(j=1 to n) of j2(j + 1)xj-1 nCj

                        = D(x*D(D(x[(1 + x)n - 1])))

                        = D(x*D((1 + x)n + nx(1 + x)n-1 - 1))

                        = D(x*(n(1 + x)n-1 + n(n - 1)x(1 + x)n-2 + n(1 + x)n-1))

                        = D(nx(1 + x)n-1 + n(n - 1)x2(1 + x)n-2 + nx(1 + x)n-1)

                        = D(2nx(1 + x)n-1 +n(n - 1)x2(1 + x)n-2

= 2n(n-1)x(1+x)n-2 + 2n(1+x)n-1 + n(n-1)[(n-2)x2(1+x)n-3 + 2x(1+x)n-2]

Now substituting x = 1 into this equation gives:

Sum(j=1 to n) of j2(j + 1) nCj

                        =  2n-22n(n - 1) + 2n-12n + n(n - 1)[2n-3(n - 2) + 2n-22]

                        = 2n-3n[4(n - 1) + 8 + (n - 1)(n + 2)]

                        = 2n-3n(n2 + 5n + 2)

which agrees with Broll's result and with Charlie's tabulations.


Edited on April 29, 2011, 11:36 pm
  Posted by Harry on 2011-04-29 23:34:28

Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (3)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information