Given an equation ax^2+bx+c=0
what values a,b cause the roots of the equation to be a and b and the discriminant to be equal to c?
Here is my attempt.
x=a ==> a*a^2 + b*a + c = 0 (1)
x=b ==> a*b^2 + b*b + c = 0 (2)
Subtracting (2) from (1) gives
a^3 - a*b^2 + b*a - b^2 = 0
or
(a-b)*(a^2 + b*a + b) = 0
a^2 + b*a + b = 0 gives
-a^2
b = ------
a+1
b^2 - 4*a*c = c gives
a^4 - 4*c*a^3 - 9*c*a^2 - 6*c*a - c = 0
a = ??? in terms of c
a-b = 0 gives
b = a
b^2 - 4*a*c = c gives
a^2 - 4*c*a - c = 0
Therefore,
b = a = 2*c +- sqrt(4*c^2 + c)
|
Posted by Bractals
on 2011-06-30 14:45:27 |