Can any base ten
repunit, other than 1, be a perfect cube?
If so, give an example. Otherwise prove that no base ten repunit (other than 1) can be a perfect cube.
The following table of repunits up to 50 1's long shows each one's prime factors that are under 10 million. If there is any value left after dividing by all these primes, if the value exceeds 10 million squared, the remaining value is shown after a *. (Under 10 million squared, we know it's a prime.) These values were then put through a probabilistic prime test. Some were found to be probably prime (exceedingly likely) and are marked prime; others were found definitely not to be prime and are marked not prime.
Perhaps this factorization into primes may provide some pattern by which the puzzle can be solved, as each prime factor must appear a multiple of three times, which doesn't seem likely as the numbers of prime factors get larger, but of course that's no proof of non-existence.
N Nth repunit
(factorization below each line)
1 1
2 11
11
3 111
3 37
4 1111
11 101
5 11111
41 271
6 111111
3 7 11 13 37
7 1111111
239 4649
8 11111111
11 73 101 137
9 111111111
3 3 37 333667
10 1111111111
11 41 271 9091
11 11111111111
21649 513239
12 111111111111
3 7 11 13 37 101 9901
13 1111111111111
53 79 265371653
14 11111111111111
11 239 4649 909091
15 111111111111111
3 31 37 41 271 2906161
16 1111111111111111
11 17 73 101 137 5882353
17 11111111111111111
2071723 5363222357
18 111111111111111111
3 3 7 11 13 19 37 52579 333667
19 1111111111111111111
* 1111111111111111111 prime
20 11111111111111111111
11 41 101 271 3541 9091 27961
21 111111111111111111111
3 37 43 239 1933 4649 10838689
22 1111111111111111111111
11 11 23 4093 8779 21649 513239
23 11111111111111111111111
* 11111111111111111111111 prime
24 111111111111111111111111
3 7 11 13 37 73 101 137 9901 99990001
25 1111111111111111111111111
41 271 21401 25601 182521213001
26 11111111111111111111111111
11 53 79 859 * 280846283204599997 not prime
27 111111111111111111111111111
3 3 3 37 757 333667 * 440334654777631 prime
28 1111111111111111111111111111
11 29 101 239 281 4649 909091 121499449
29 11111111111111111111111111111
3191 16763 43037 62003 77843839397
30 111111111111111111111111111111
3 7 11 13 31 37 41 211 241 271 2161 9091 2906161
31 1111111111111111111111111111111
2791 6943319 * 57336415063790604359 prime
32 11111111111111111111111111111111
11 17 73 101 137 353 449 641 1409 69857 5882353
33 111111111111111111111111111111111
3 37 67 21649 513239 * 1344628210313298373 prime
34 1111111111111111111111111111111111
11 103 4013 2071723 * 117957818840753430733 not prime
35 11111111111111111111111111111111111
41 71 239 271 4649 123551 * 102598800232111471 prime
36 111111111111111111111111111111111111
3 3 7 11 13 19 37 101 9901 52579 333667 999999000001
37 1111111111111111111111111111111111111
2028119 * 547853016076034547830334961169 not prime
38 11111111111111111111111111111111111111
11 * 1010101010101010101010101010101010101
39 111111111111111111111111111111111111111
3 37 53 79 * 239073561261285168617387389778123 not prime
40 1111111111111111111111111111111111111111
11 41 73 101 137 271 3541 9091 27961 1676321 5964848081
41 11111111111111111111111111111111111111111
83 1231 538987 * 201763709900322803748657942361 prime
42 111111111111111111111111111111111111111111
3 7 7 11 13 37 43 127 239 1933 2689 4649 459691 909091 10838689
43 1111111111111111111111111111111111111111111
173 1527791 * 4203852214522105994074156592890477 not prime
44 11111111111111111111111111111111111111111111
11 11 23 89 101 4093 8779 21649 513239 * 1112470797641561909 not prime
45 111111111111111111111111111111111111111111111
3 3 31 37 41 271 238681 333667 2906161 * 4185502830133110721 prime
46 1111111111111111111111111111111111111111111111
11 47 139 2531 * 6108857605465744444444383355868389787 not prime
47 11111111111111111111111111111111111111111111111
* 11111111111111111111111111111111111111111111111
48 111111111111111111111111111111111111111111111111
3 7 11 13 17 37 73 101 137 9901 5882353 * 999900000000999999990001 not prime
49 1111111111111111111111111111111111111111111111111
239 4649 * 1000000100000010000001000000100000010000001 not prime
50 11111111111111111111111111111111111111111111111111
11 41 251 271 5051 9091 21401 25601 * 14396532879144434243285201 not prime
|
Posted by Charlie
on 2011-10-25 11:59:02 |