Consider an infinite chessboard. Each square contains either a 1 or an X in some pattern. (X can be any real number but for a given board, all the X's are the same.)
Each square with an X on it has weight equal to zero.
Each square with a 1 on it has a weight of 1 + N*X where N is the total number of X's on the 8 surrounding squares.
For a given value of X, find a way of tiling the board with the highest average weight per square.
Inspired by various Tower Defense games.
(In reply to
re(2): Final Answer ?? (spoiler) by Steve Herman)
Steve,
Here is a tower defence game:
http://armorgames.com/play/3527/gemcraft-chapter-0
I assume that this is the sort of thing that Jer meant.
|
Posted by broll
on 2012-02-10 09:16:59 |