10 for N=1 to 6600000
20 N1=N*N*N*N*N+5
30 N2=(N+1)*(N+1)*(N+1)*(N+1)*(N+1)+5
35 G=fnGcd(N1,N2)
40 if G>1 then print N,N1;N2,G
50 next N
60 end
70 fnGcd(A,B)
80 Dnd=A
90 Dvr=B
100 repeat
110 R=Dnd @ Dvr
120 Dnd=Dvr:Dvr=R
130 until R=0
140 return(Dnd)
finds
n n^5 + 5 (n+1)^5 + 5 GCD
533360 43162064617930483653017600005 43162469243572337970660522806 1968751
2502111 98069251575860378820108173491556 98069447549040555681007462776837 1968751
4470862 1786307923207969213702200270276837 1786309920930916485357408703430548 1968751
6439613 11073855245289742910575769522649298 11073863843522807989513632989305829 1968751
indicating that, at least up to n = 6,600,000, the GCD's are either 1 or 1,968,751, which is prime.
|
Posted by Charlie
on 2012-08-22 15:42:14 |