All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math
Quaint Quintic Question (Posted on 2012-10-21) Difficulty: 3 of 5
If α = 5√(41+29√2) + 5√(41-29√2) is real, then show that α must be an integer. No calculators or computer programs allowed.

See The Solution Submitted by K Sengupta    
Rating: 3.3333 (3 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution Solution Comment 1 of 1
Let        a = u + v,   where u = (41 + 29sqrt(2))1/5, v = (41 – 29sqrt(2))1/5

then:     uv = (412 – 2*292)1/5  =  (-1)1/5  =  -1         for real u, v       (1)

a5 = (u + v)5      = u5 + 5u4v + 10u3v2 + 10u2v3 + 5uv4 +v5

                        = u5 +v5 + 5uv(u3 + v3) + 10u2v2(u+v)

                        = u5 +v5 + 5uv[(u + v)3 – 3uv(u + v)] + 10(uv)2(u+v)

                        =  82  +  5(-1)[a3 – 3(-1)a] + 10(-1)2a     using (1)

                        =  82 – 5a3 - 15a +10a

giving:              a5 + 5a3 + 5a – 82 = 0

Factorising:        (a – 2)(a4 +2a3 + 9a2 + 18a + 41) = 0

We know that there is only one real value for a, so:    a = 2    QED



  Posted by Harry on 2012-10-21 22:18:10
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (3)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information