If n is even, then 2 divides n4 + 4n.
Clearly (n4 + 4n)/2 > 2, for n > 1.
This establishes the result for even n.
If n is odd, we will write n4 + 4n as the difference of two squares of integers, and hence obtain a factorization. Setting n = 2m + 1, we have
<table><tbody><tr class="h"><td class="u">n
4 + 4
2m+1</td><td> = (n
2)
2 + (2
2m+1)
2</td></tr>
<tr><td> </td><td> = (n
2 + 2
2m+1)
2 − 2
2m+2n
2</td></tr><tr><td> </td><td> = (n
2 + 2
2m+1 + 2
m+1n)(n
2 + 2
2m+1 − 2
m+1n)</td></tr></tbody></table>
We must now show that both factors are greater than one.
Clearly n2 + 22m+1 + 2m+1n > 1, for n > 1.
<table><tbody><tr class="h"><td class="u">Next consider f(n,m)</td><td> = n
2 + 2
2m+1 − 2
m+1n</td></tr><tr><td> </td><td> = (n − 2
m)
2 + 2
2m</td></tr></tbody></table>
For n > 1 (m > 0), 22m > 1; hence f(n,m) > 1 for all odd n > 1.
Therefore n4 + 4n is composite for all integers n > 1.