All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math
Primary Problem 2 (Posted on 2012-12-09) Difficulty: 4 of 5
Prove that there exist infinitely many primes of the form 4x+1 and infinitely many primes of the form 4x-1.

See The Solution Submitted by Math Man    
Rating: 5.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
re: Too simplistic? | Comment 2 of 4 |
(In reply to Too simplistic? by brianjn)

While all primes larger than 3 are in that form, not all numbers of that form are primes.

Here's a list that follows your plan:

7       5      ..
13      11     ..
19      17     ..
25      23     *.
31      29     ..
37      35     .*
43      41     ..
49      47     *.
55      53     *.
61      59     ..
67      65     .*
73      71     ..
79      77     .*
85      83     *.
91      89     *.
97      95     .*
103     101    ..
109     107    ..
115     113    *.
121     119    **
127     125    .*
133     131    *.
139     137    ..
145     143    **
151     149    ..
157     155    .*
163     161    .*
169     167    *.
175     173    *.
181     179    ..
187     185    **
193     191    ..
199     197    ..
205     203    **
211     209    .*
217     215    **
223     221    .*
229     227    ..
235     233    *.
241     239    ..
247     245    **
253     251    *.
259     257    *.
265     263    *.
271     269    ..
277     275    .*
283     281    ..

In the pairs, if both numbers are prime, they are followed by "..". If either the first or second is composite, the first or second "." is replaced with an asterisk, and if both are composite, then "**".

The double-dots get rarer as you go up. The question is whether the primes (known to be infinitely many) eventually settle only into either .* or *. places, and the double dots eventually stop altogether.

So the idea is to prove that pairs of primes exist in infinite number rather than just isolated primes.


  Posted by Charlie on 2012-12-10 10:15:40
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (3)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information