S=a+b+c+d+e+f, where:
each of a,b,c,d,e and f is a positive integer.
If S divides each of:
a*b*c + d*e*f and:
a*b + b*c + c*a - d*e - e*f - d*f
then, is S always composite?
If so, prove it. If not, provide a counter example.
|
||
perplexus dot info |
|
|
|||||||||||||||||