Alice and Bob play a game. Starting with Alice, they alternate in selecting digits for a 6-digit decimal number UVWXYZ that they construct from left to right. Alice chooses U, then Bob chooses V, then Alice chooses W, and so on. No digit can be repeated. Alice wins if UVWXYZ is not a prime. Can Alice always win?
(In reply to
re: My solution (computer assisted) by Ady TZIDON)
The following revised list has Alice use 5 and 2 for U and W:
UVWX --- Alice's winning choices for UVWXY ----
5021 50216 50219
5023 50231 50234 50236 50237 50238
5024 50241 50243 50246 50247
5026 50267
5027 50273 50274 50279
5028 50283 50287 50289
5029 50294 50298
5120 51203 51206 51207 51208
5123 51230 51234 51236 51237 51239
5124 51240 51243 51247 51248
5126 51263 51269
5127 51270 51273 51278
5128 51283 51286 51287
5129 51293 51294 51296
5320 53201 53204 53207 53208
5321 53210 53217
5324 53246 53247 53249
5326 53264 53267
5327 53271 53274 53276 53279
5328 53287 53289
5329 53296 53297
5420 54201 54203
5421 54210 54217
5423 54230 54231 54236 54238 54239
5426 54261 54263 54267
5427 54270 54273
5428 54280 54281 54286
5429 54290 54296 54297
5620 56203 56207 56208
5621 56213 56217
5623 56237 56238
5624 56248
5627 56274 56279
5628 56280
5629 56291
5720 57201 57203
5721 57214 57219
5723 57234 57236
5724 57240 57248
5726 57261 57264
5728 57289
5729 57291 57298
5820 58204 58207 58209
5821 58210 58214 58219
5823 58230 58234 58236
5824 58247
5826 58261 58263
5827 58270 58274
5829 58290 58291
5920 59203
5921 59210 59214 59216 59217 59218
5923 59231 59237
5924 59240 59241 59243 59247
5926 59261 59267
5927 59270 59271 59273 59278
5928 59280 59281 59283
|
Posted by Charlie
on 2013-05-28 10:22:16 |