Alice is playing with a new tetrahedral die. Each face has a different positive integer on it, but the numbers are peculiar, in that the numbers on the three exposed faces always sum to a perfect square.
Assuming that Alice’s tetrahedral die uses the smallest possible numbers, what are they?
Alice claps her hands in delight. 'How splendid it would be if all four sides also summed to a square!' she declares.
Is that possible?
(Adapted from Science 2.0)
The numbers with the smallest possible total are 1, 22, 41 and 58, adding to 122. The sum minus each possible hidden side is respectively, 121, 100, 81 and 64. The first several possibilities are:
total
1 22 41 58 122
9 34 57 78 178
7 34 59 103 203
14 41 66 89 210
5 34 61 130 230
12 41 68 116 237
1 32 88 136 257
3 34 63 159 259
10 41 70 145 266
26 57 86 113 282
1 34 65 190 290
4 68 97 124 293
6 39 99 151 295
8 41 72 176 297
24 57 88 144 313
33 66 97 126 322
2 37 130 157 326
6 41 74 209 330
The first few with square totals are:
120 177 232 432 961 *
65 128 248 648 1089 *
136 264 384 441 1225 *
73 144 408 744 1369 *
89 344 656 936 2025 *
176 344 504 1001 2025 *
97 192 552 1560 2401 *
97 552 720 1032 2401 *
192 376 801 1032 2401 *
99 291 979 1131 2500 *
99 475 651 1275 2500 *
208 600 873 1128 2809 *
216 321 424 2064 3025 *
321 424 624 1656 3025 *
440 545 1040 1224 3249 *
440 648 848 1313 3249 *
232 345 1272 1632 3481 *
232 672 777 1800 3481 *
345 456 880 1800 3481 *
DEFDBL A-Z
CLS
FOR tot = 1 TO 330
FOR a = 1 TO tot / 4
sq = tot - a
sr = INT(SQR(sq) + .5)
IF sr * sr = sq THEN
FOR b = a + 1 TO (tot - a) / 3
sq = tot - b
sr = INT(SQR(sq) + .5)
IF sr * sr = sq THEN
FOR c = b + 1 TO (tot - a - b) / 2
sq = tot - c
sr = INT(SQR(sq) + .5)
IF sr * sr = sq THEN
d = tot - a - b - c
sq = tot - d
sr = INT(SQR(sq) + .5)
IF sr * sr = sq AND d > c THEN
sq = tot
sr = INT(SQR(sq) + .5)
IF sr * sr = sq THEN f$ = "*": ELSE f$ = ""
PRINT a; b; c; d, tot; f$
END IF
END IF
NEXT c
END IF
NEXT b
END IF
NEXT a
NEXT tot
PRINT
FOR srtot = 1 TO 60
tot = srtot * srtot
FOR a = 1 TO tot / 4
sq = tot - a
sr = INT(SQR(sq) + .5)
IF sr * sr = sq THEN
FOR b = a + 1 TO (tot - a) / 3
sq = tot - b
sr = INT(SQR(sq) + .5)
IF sr * sr = sq THEN
FOR c = b + 1 TO (tot - a - b) / 2
sq = tot - c
sr = INT(SQR(sq) + .5)
IF sr * sr = sq THEN
d = tot - a - b - c
sq = tot - d
sr = INT(SQR(sq) + .5)
IF sr * sr = sq AND d > c THEN
sq = tot
sr = INT(SQR(sq) + .5)
IF sr * sr = sq THEN f$ = "*": ELSE f$ = ""
PRINT a; b; c; d, tot; f$
END IF
END IF
NEXT c
END IF
NEXT b
END IF
NEXT a
NEXT
|
Posted by Charlie
on 2013-07-22 18:37:13 |