The word "distinct" is redundant.<o:p></o:p>
If the numbers are not distinct then m,m,m
qualifies as arithm.sequence with
d=0,but m,m,m+1 cannot be regarded as geom.. seq, for any m, since m/m and (m+1)/m
do not define the same q.
Solution.
Let Ar. Seq be m-d, m, m+d
Geom. SE m-d, m, m+d+1
Solving m^2=( m-d)*( m+d+1)
We get m=d*( d+1)
And the series
is d^2, d*( d+1) and ( d+1)^2<o:p></o:p>
Example 1 ar/geom.
: 36,42,48/49 for m=42, d=6,
q=
7/6 and - 7/6
Example 2 ar/geom. : 49,42,35/36 for m=42, d=-7, q= 6/7 and - 6/7.
For any d except d=o or d=-1 we get integer triplets.
<o:p> </o:p>