All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math
Add 1, Get Geometric (Posted on 2013-11-23) Difficulty: 3 of 5
Prove that there exist infinitely many triplets (x,y,z) of distinct positive integers such that: x, y and z are in arithmetic sequence and x, y and z + 1 are in geometric sequence.

See The Solution Submitted by K Sengupta    
Rating: 5.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution SOLUTION Comment 1 of 1

The word "distinct"  is redundant.<o:p></o:p>

If the numbers are not distinct then m,m,m qualifies as  arithm.sequence with d=0,but m,m,m+1 cannot be regarded as geom.. seq, for any m, since m/m and (m+1)/m do not define the same q.

Solution.

  

 Let  Ar. Seq  be                m-d,   m,     m+d

Geom. SE                              m-d,   m,     m+d+1

Solving                          m^2=( m-d)*( m+d+1)

We get     m=d*( d+1)

And the series   is   d^2,   d*( d+1)  and  ( d+1)^2<o:p></o:p>

Example 1      ar/geom. : 36,42,48/49    for m=42, d=6,  
     q= 7/6  and      - 7/6

Example    2    ar/geom. :    49,42,35/36    for m=42, d=-7,       q= 6/7  and      - 6/7.

For any d except d=o or d=-1 we get  integer triplets.

<o:p> </o:p>


  Posted by Ady TZIDON on 2013-11-23 11:57:28
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (3)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information