All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Shapes > Geometry
Incircles in equilateral triangles (Posted on 2014-01-18) Difficulty: 3 of 5
In an equilateral triangle ABC the lines AC'A', BA'B', CB'C' are drawn making equal angles with AB, BC, CA, respectively, forming the triangle A'B'C', and so that the radius of the incircle of triangle A'B'C' is equal to the radius of the incircle of triangle AA'B. Find A'B' in terms of AB

No Solution Yet Submitted by Danish Ahmed Khan    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution Solution Comment 1 of 1

Let x = /BAA' and apply the law of sines to triangle AA'B:

         |AB|             |BA'|            |AA'|
     ------------  =  ------------  =  ------------ 
      sin(/AA'B)       sin(/BAA')       sin(/ABA')

                           or

        |AB|         |BA'|          |AA'|
     ----------  =  --------  =  -----------
      sin(120)       sin(x)       sin(60-x)

                           or

     |BA'|  =  2|AB|[sin(x)*sqrt(3)]/3  and

     |AA'|  =  |AB|[3cos(x) - sin(x)*sqrt(3)]/3

If [PQR] denotes the area of triangle PQR, s its 
semiperimeter, and r its inradius; then

     r = [PQR]/s

For triangle A'B'C':

          [|A'B'||A'C'| sin(/B'A'C')]/2
     r = -------------------------------
            [|A'B'|+|B'C'|+|C'A'|]/2

       = |A'B'|*sqrt(3)/6

       = (|AA'| - |BA'|)*sqrt(3)/6

       = |AB|*[cos(x)*sqrt(3) - 3sin(x)]/6        (1)

Note:  

   |A'B'| = [cos(x) - sin(x)*sqrt(3)]*|AB|        (2)
            All we need is x.

For triangle AA'B:

          [|AB||AA'| sin(/BAA')]/2
     r = --------------------------
            [|AB|+|BA'|+|AA'|]/2

          |AB|*sin(x)[3cos(x)- sin(x)*sqrt(3)]
       = --------------------------------------   (3)
              3 + 3cos(x) + sin(x)*sqrt(3)

Combining (1) and (2) we get

     sin(x)*[3 + 8cos(x)] = [1 + cos(x)]*sqrt(3)

Using MathCad we get

        cos(x) = [sqrt(3) + sqrt(7)]*sqrt(3)/8  and
     sin(x) = [3*sqrt(3) - sqrt(7)]/8

Plugging these into (2) gives

     |A'B'| = [sqrt(21) - 3]/4 * |AB|
           ~= 0.39593 * |AB|

QED

Edited on January 23, 2014, 4:29 am


  Posted by Bractals on 2014-01-23 05:08:06
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (0)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information