All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math
N & n (Posted on 2014-01-27) Difficulty: 2 of 5
N is a m-th power of an integer.
It consists of n distinct digits, averaging n.

Find n,m and N, using your head + pen and paper only.

Check, whether there exist additional solutions (computer allowed).

Clearly, n>1; m>1 - to exclude trivial cases.

No Solution Yet Submitted by Ady TZIDON    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution computer solution for all the solutions | Comment 3 of 7 |

DECLARE SUB addOn (upto#)
DEFDBL A-Z
CLS

DIM SHARED used(9), h(6), n, sod, tot, value, scount

FOR n = 2 TO 6
  sod = n * n
  FOR first = 1 TO 9
    used(first) = 1
    h(1) = first
    value = first
    tot = first
   
    addOn 2
   
    used(first) = 0
  NEXT
NEXT
PRINT scount

SUB addOn (upto)
  FOR new = 0 TO 9
    IF tot + new <= sod THEN
       IF used(new) = 0 THEN
          used(new) = 1
          h(upto) = new
          svalue = value
          value = 10 * value + new
          tot = tot + new
         
          IF upto = n THEN
            IF tot = sod THEN
          
              FOR rt = 2 TO 20
               r = INT(value ^ (1 / rt) + .5)
               IF value = INT(r ^ rt + .5) THEN
                 PRINT value, r; "^"; rt
                 scount = scount + 1
               END IF
              NEXT rt

            END IF
          ELSE
             addOn upto + 1
          END IF
         
          used(new) = 0
          value = svalue
          tot = tot - new
       END IF
    END IF
  NEXT
END SUB

finds 12 solutions:

 216      =    6 ^ 3
 243      =    3 ^ 5
 324      =    18 ^ 2
 3481     =    59 ^ 2
 9025     =    95 ^ 2
 12769    =    113 ^ 2
 30976    =    176 ^ 2
 37249    =    193 ^ 2
 85264    =    292 ^ 2
 96721    =    311 ^ 2
 287496   =    66 ^ 3
 751689   =    867 ^ 2
 
More than 6 distinct digits would be impossible as 7 digits would require a total of 7*7=49 and the highest that 7 distinct digits could be would be 9+8+7+6+5+4+3=42.


  Posted by Charlie on 2014-01-27 13:33:02
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (0)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information