N is a m-th power of an integer.
It consists of n distinct digits, averaging n.
Find n,m and N, using your head + pen and paper only.
Check, whether there exist additional solutions (computer allowed).
Clearly, n>1; m>1 - to exclude trivial cases.
144 = 12 ^ 2
216 = 6 ^ 3
225 = 15 ^ 2
243 = 3 ^ 5
324 = 18 ^ 2
441 = 21 ^ 2
900 = 30 ^ 2
1681 = 41 ^ 2
3364 = 58 ^ 2
3481 = 59 ^ 2
4624 = 68 ^ 2
7225 = 85 ^ 2
9025 = 95 ^ 2
12769 = 113 ^ 2
14884 = 122 ^ 2
24649 = 157 ^ 2
24964 = 158 ^ 2
27556 = 166 ^ 2
30976 = 176 ^ 2
33856 = 184 ^ 2
37249 = 193 ^ 2
37636 = 194 ^ 2
44944 = 212 ^ 2
48841 = 221 ^ 2
56644 = 238 ^ 2
65536 = 256 ^ 2
65536 = 16 ^ 4
65536 = 4 ^ 8
65536 = 2 ^ 16
66049 = 257 ^ 2
70756 = 266 ^ 2
75076 = 274 ^ 2
75625 = 275 ^ 2
80089 = 283 ^ 2
80656 = 284 ^ 2
85264 = 292 ^ 2
96721 = 311 ^ 2
149769 = 387 ^ 2
173889 = 417 ^ 2
178929 = 423 ^ 2
199809 = 447 ^ 2
278784 = 528 ^ 2
279936 = 6 ^ 7
287496 = 66 ^ 3
288369 = 537 ^ 2
294849 = 543 ^ 2
389376 = 624 ^ 2
439569 = 663 ^ 2
459684 = 678 ^ 2
467856 = 684 ^ 2
471969 = 687 ^ 2
509796 = 714 ^ 2
589824 = 768 ^ 2
599076 = 774 ^ 2
617796 = 786 ^ 2
660969 = 813 ^ 2
665856 = 816 ^ 2
675684 = 822 ^ 2
685584 = 828 ^ 2
695556 = 834 ^ 2
746496 = 864 ^ 2
751689 = 867 ^ 2
759375 = 15 ^ 5
767376 = 876 ^ 2
777924 = 882 ^ 2
788544 = 888 ^ 2
793881 = 891 ^ 2
799236 = 894 ^ 2
853776 = 924 ^ 2
859329 = 927 ^ 2
870489 = 933 ^ 2
876096 = 936 ^ 2
884736 = 96 ^ 3
887364 = 942 ^ 2
898704 = 948 ^ 2
915849 = 957 ^ 2
927369 = 963 ^ 2
938961 = 969 ^ 2
944784 = 972 ^ 2
956484 = 978 ^ 2
968256 = 984 ^ 2
970299 = 99 ^ 3
974169 = 987 ^ 2
986049 = 993 ^ 2
2778889 = 1667 ^ 2
4695889 = 2167 ^ 2
5678689 = 2383 ^ 2
5697769 = 2387 ^ 2
5938969 = 2437 ^ 2
6568969 = 2563 ^ 2
6589489 = 2567 ^ 2
6848689 = 2617 ^ 2
6895876 = 2626 ^ 2
7974976 = 2824 ^ 2
7997584 = 2828 ^ 2
8779369 = 2963 ^ 2
9878449 = 3143 ^ 2
9966649 = 3157 ^ 2
Indeed there are no 8-digit results and of course no 9-digit.
|
Posted by Charlie
on 2014-01-27 15:48:49 |