All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math
Powerful Divisor (Posted on 2014-05-01) Difficulty: 3 of 5
Let us consider the expression MM+1, where M is a positive integer.

It can be verified that M=3 is the least value for which 22 divides MM+1.

Given that n is a positive integer, find the least value of M (in terms of n) for which MM+1 is divisible by 2n.

See The Solution Submitted by K Sengupta    
Rating: 5.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
re: more examples | Comment 3 of 8 |
(In reply to more examples by Charlie)

 49      562949953421312         16      18446744073709551616
 50      1125899906842624        16      18446744073709551616
 51      2251799813685248        16      18446744073709551616
 52      4503599627370496        16      18446744073709551616
 53      9007199254740992        16      18446744073709551616
 54      18014398509481984       16      18446744073709551616
 55      36028797018963968       16      18446744073709551616
 56      72057594037927936       16      18446744073709551616
 57      144115188075855872      16      18446744073709551616
 58      288230376151711744      16      18446744073709551616
 59      576460752303423488      16      18446744073709551616
 60      1152921504606846976     16      18446744073709551616
 61      2305843009213693952     16      18446744073709551616
 62      4611686018427387904     16      18446744073709551616
 63      9223372036854775808     16      18446744073709551616
 64      18446744073709551616    16      18446744073709551616
 65      36893488147419103232    24      1333735776850284124449081472843776

  Posted by Charlie on 2014-05-01 16:37:49
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (3)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information