Do there exist three integers in Arithmetic Progression whose product is prime ?
If Yes, then what are the three integers and if No, then why ?
[Note: The numbers: x1, x2, x3, x4, x5, x6,........ are said to be in Arithmetic Progression if (x2 - x1) = (x3 - x2) = (x4 - x3) = (x5 - x4) = ........ and so on].
As the product has to be prime, we must have 2 [1] and one prime number.
So we have -3 -1 1 and -1 1 3