A, B and C are three positive integers satisfying: A+B = 132 and B+C = 278.
How many distinct values of sod(A) + sod(C) are possible?
** sod(n) is the sum of the digits in the base ten expansion of n.
Twenty possible sums of sod's exist, from 10 to 29:
10 1
11 71
12 3
13 6
14 6
15 8
16 9
17 11
18 11
19 13
20 71
21 12
22 10
23 8
24 7
25 5
26 4
27 3
28 1
29 19
The numbers indicate how many value sets (dependent on b) result in the given number for the total of the two sod's.
DefDbl A-Z
Dim crlf$
Dim sumsod(54)
Function mform$(x, t$)
a$ = Format$(x, t$)
If Len(a$) < Len(t$) Then a$ = Space$(Len(t$) - Len(a$)) & a$
mform$ = a$
End Function
Private Sub Form_Load()
ChDir "C:\Program Files (x86)\DevStudio\VB\projects\flooble"
Text1.Text = ""
crlf$ = Chr(13) + Chr(10)
Form1.Visible = True
DoEvents
sumPlus = 132 + 278
For b = 1 To sumPlus - 131
a = 132 - b: c = 278 - b
tot = sod(a) + sod(c)
sumsod(tot) = sumsod(tot) + 1
Next b
For i = 1 To 54
If sumsod(i) > 0 Then
Text1.Text = Text1.Text & mform(i, "###0") & mform(sumsod(i), "##0") & crlf
ct = ct + 1
End If
Next
Text1.Text = Text1.Text & ct & crlf
Text1.Text = Text1.Text & " done"
End Sub
Function sod(n)
s$ = LTrim(Str(n))
tot = 0
For i = 1 To Len(s$)
tot = tot + Val(Mid(s$, i, 1))
Next
sod = tot
End Function
|
Posted by Charlie
on 2014-12-09 11:23:28 |