Given that
Σm = 1 to 44 cos mo
y = ---------------
Σm = 1 to 44 sin mo
Find the value of floor(100y)
By regrouping the terms of the numerator we get:
Σm
= 1 to 44 cos m =(2*cos(45/2))
*(cos(43/2)+ cos(41/2)+ cos(39/2)+… cos(1/2)) (i)
By the
same reasoning:
Σm
= 1 to 44 sin m =(2*sin(45/2)) *(cos(43/2)+
cos(41/2)+ cos(39/2)+… cos(1/2)) (ii)
So: y=cot (45/2 )
Since
tan 45=1 and tan 2x=2x/(1-x^2)
cot (22.5)=1+sqrt(2)
Answer:
floor 100*(1+sqrt(2)= 241