Will Shortz (the renowned American puzzle creator) maintains that
Cabbagehead
is the word of lowest possible
gematria(i.e. a=1, b=2,...…and z=26) in the set of 11 – letter words.
a. What about Cabbagehead 's neighbors i.e. words of 10 letter and 12 letters?
Please provide your candidates for the lowest gematria.
b.Maybe you can find a lower (than Cabbagehead
) gematria within the list of 11 –letter words?
The undersigned has no idea what the solutions are.
Apparently "cabbagehead" is not in my word list, but here are the minima for length 4 through 15 from my list, with the total and the average per letter:
4
abba 6 1.5
baba 6 1.5
5
abaca 8 1.6
6
baccae 15 2.5
7
cabbage 21 3
8
cabbaged 25 3.125
9
beachhead 37 4.11111111111111
bedabbled 37 4.11111111111111
10
deadheaded 41 4.1
11
abracadabra 52 4.72727272727273
12
bacchanalian 69 5.75
ineffaceable 69 5.75
13
dieffenbachia 73 5.61538461538462
14
dieffenbachias 92 6.57142857142857
15
deacidification 112 7.46666666666667
done
DefDbl A-Z
Dim crlf$, list$(100)
Private Sub Form_Load()
Text1.Text = ""
crlf$ = Chr(13) + Chr(10)
Form1.Visible = True
DoEvents
For l = 4 To 15
mini = 9999
Text1.Text = Text1.Text & crlf & l & crlf
w$ = Space$(l)
Open "\words\words" + LTrim(Str(l)) + ".txt" For Binary As #1
ct = 0
Do
Get #1, , w$
If EOF(1) Then Exit Do
If gem(w$) <= mini Then
If gem(w) = mini Then
ct = ct + 1
list(ct) = w
Else
ct = 1
list(ct) = w
mini = gem(w)
End If
End If
Loop
Close 1
For i = 1 To ct
Text1.Text = Text1.Text & list(i) & Str(mini) & Str(mini / l) & crlf
Next
Next
Text1.Text = Text1.Text & "done"
End Sub
Function gem(x$)
ct = 0
For i = 1 To Len(x)
ct = ct + InStr("abcdefghijklmnopqrstuvwxyz", Mid(x, i, 1))
Next i
gem = ct
End Function
|
Posted by Charlie
on 2015-05-08 10:51:07 |