B=(-1,0), C=(1,0), D=(d,0), O=(0,0)
BD=1+d, CD=1-d, OD=d
The harmonic mean is 2(1+d)(1-d)/((1+d)+(1-d))=1-d^2
AD=1-d^2
OA = 1
Using the law of cosines on triangle ADO find
cos(∠ODA)=(d^2+(1-d^2)^2-1^2)/(2(d^2)(1-d^2))
=-d/2=cos(∠BDA)
Using the law of cosines on triangle ABD find
AB^2=(d+1)^2+(1-d^2)^2-2(d+1)(1-d^2)*-d/2=-d^3+3d+2
Using the law of cosines on triangle ABD again
cos(∠BAD)=[(-d^3+3d+2)+(1-d^2)^2-(1+d)^2]/[2(1-d^2)*sqrt(-d^3+3d+2)]
cos(∠BAD)=sqrt(2-d)/2
Using the double angle formula for this last cosine
cos(2*∠BAD)=2[sqrt(2-d)/2]^2-1=-d/2
which is precisely cos(∠BDA)
so k=2
|
Posted by Jer
on 2015-06-15 12:36:54 |