All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math
Nine trolls (Posted on 2015-07-23) Difficulty: 2 of 5
Nine trolls are placed in the cells of a three-by-three square.
The trolls in neighboring cells shake hands with each other.
Later they re-arrange themselves in the square and the neighbors greet each other once more.
Then they repeat it again for the 3rd time.

Prove (or provide a counterexample) that there is at least one pair of trolls who didn’t greet each other.

Based on a problem in Russian "Kvantik",2012

No Solution Yet Submitted by Ady TZIDON    
Rating: 3.0000 (2 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Some Thoughts only a start | Comment 1 of 9
Being that there are exactly C(9,2)=36 possible pairs and 12*3=36 handshakes that take place, the statement to be proved is equivalent to saying there must be at least one pair of trolls that shake hands more than once, thereby depriving some other pair of a handshake.
  Posted by Charlie on 2015-07-23 08:27:41
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (0)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information