Below are computer-generated instances of the given formula, with annotations of deductions placed to the right:
g(0) + g(0) = g(0) + g(0)
g(0) + g(0) = g(0) + g(0)
g(0) + g(0) = g(0) + g(0)
g(0) + g(0) = g(0) + g(0)
g(0) + g(-1) = g(0) + g(-1)
g(0) + g(1) = g(0) + g(1)
g(0) + g(-1) = g(0) + g(-1)
g(0) + g(1) = g(0) + g(1)
g(-1) + g(0) = g(-1) + g(0)
g(-1) + g(0) = g(-1) + g(0)
g(1) + g(0) = g(1) + g(0)
g(1) + g(0) = g(1) + g(0)
g(0) + g(-2) = g(0) + g(-2)
g(0) + g(2) = g(0) + g(2)
g(0) + g(-2) = g(0) + g(-2)
g(0) + g(2) = g(0) + g(2)
g(-1) + g(-1) = g(1) + g(-3) g(-3)=g(1)
g(-1) + g(1) = g(-3) + g(3) g(3)=g(1)
g(1) + g(-1) = g(-1) + g(1)
g(1) + g(1) = g(3) + g(-1)
g(-2) + g(0) = g(-2) + g(0)
g(-2) + g(0) = g(-2) + g(0)
g(2) + g(0) = g(2) + g(0)
g(2) + g(0) = g(2) + g(0)
g(0) + g(-3) = g(0) + g(-3) g(0)=g(1)
g(0) + g(3) = g(0) + g(3)
g(0) + g(-3) = g(0) + g(-3)
g(0) + g(3) = g(0) + g(3)
g(-1) + g(-2) = g(3) + g(-6) g(-6)=g(-2)
g(-1) + g(2) = g(-5) + g(6) g(1)+g(2)=g(-5)+g(6)
g(1) + g(-2) = g(-3) + g(2) g(-2) = g(2)
g(1) + g(2) = g(5) + g(-2) g(5)=g(1)
g(-2) + g(-1) = g(2) + g(-5) g(-5)=g(1); therefore g(6)=g(2)
g(-2) + g(1) = g(-6) + g(5) g(-6)=g(2)=g(6)
g(2) + g(-1) = g(-2) + g(3)
g(2) + g(1) = g(6) + g(-3)
g(-3) + g(0) = g(-3) + g(0)
g(-3) + g(0) = g(-3) + g(0)
g(3) + g(0) = g(3) + g(0)
g(3) + g(0) = g(3) + g(0)
g(0) + g(-4) = g(0) + g(-4)
g(0) + g(4) = g(0) + g(4)
g(0) + g(-4) = g(0) + g(-4)
g(0) + g(4) = g(0) + g(4)
g(-1) + g(-3) = g(5) + g(-9) g(5)+g(-9) = 2*g(1)
g(-1) + g(3) = g(-7) + g(9) g(-7)+g(9) = 2*g(1)
g(1) + g(-3) = g(-5) + g(3) g(-5)=g(1)
g(1) + g(3) = g(7) + g(-3) g(7)=g(1)
g(-2) + g(-2) = g(6) + g(-10) g(6)+g(-10)=2*g(2)
g(-2) + g(2) = g(-10) + g(10) g(10)+g(-10)=2*g(2); therefore g(10)=g(6)
g(2) + g(-2) = g(-6) + g(6) g(6)+g(-6)=2*g(2)
g(2) + g(2) = g(10) + g(-6)
g(-3) + g(-1) = g(3) + g(-7) g(-7)=g(1)
g(-3) + g(1) = g(-9) + g(7)
g(3) + g(-1) = g(-3) + g(5)
g(3) + g(1) = g(9) + g(-5)
g(-4) + g(0) = g(-4) + g(0)
g(-4) + g(0) = g(-4) + g(0)
g(4) + g(0) = g(4) + g(0)
g(4) + g(0) = g(4) + g(0)
g(0) + g(-5) = g(0) + g(-5)
g(0) + g(5) = g(0) + g(5)
g(0) + g(-5) = g(0) + g(-5)
g(0) + g(5) = g(0) + g(5)
g(-1) + g(-4) = g(7) + g(-12)
g(-1) + g(4) = g(-9) + g(12)
g(1) + g(-4) = g(-7) + g(4)
g(1) + g(4) = g(9) + g(-4)
g(-2) + g(-3) = g(10) + g(-15)
g(-2) + g(3) = g(-14) + g(15)
g(2) + g(-3) = g(-10) + g(9)
g(2) + g(3) = g(14) + g(-9)
g(-3) + g(-2) = g(9) + g(-14)
g(-3) + g(2) = g(-15) + g(14)
g(3) + g(-2) = g(-9) + g(10)
g(3) + g(2) = g(15) + g(-10)
g(-4) + g(-1) = g(4) + g(-9)
g(-4) + g(1) = g(-12) + g(9)
g(4) + g(-1) = g(-4) + g(7)
g(4) + g(1) = g(12) + g(-7)
g(-5) + g(0) = g(-5) + g(0)
g(-5) + g(0) = g(-5) + g(0)
g(5) + g(0) = g(5) + g(0)
g(5) + g(0) = g(5) + g(0)
It would seem that G(1) and G(2) can be arbitrarily chosen and then all the nonzero (positive and negative) even x have G(x) = G(2) and odd x have G(x)=G(1). G(0) would also be the same as G(1), the only such even case.
DefDbl A-Z
Dim crlf$
Private Sub Form_Load()
Form1.Visible = True
Text1.Text = ""
crlf = Chr$(13) + Chr$(10)
For tot = 0 To 5
For x0 = 0 To tot
y0 = tot - x0
For xf = -1 To 1 Step 2
For yf = -1 To 1 Step 2
Text1.Text = Text1.Text & "g(" & x0 * xf & ") + "
Text1.Text = Text1.Text & "g(" & y0 * yf & ") = "
Text1.Text = Text1.Text & "g(" & x0 * xf + 2 * x0 * xf * y0 * yf & ") + "
Text1.Text = Text1.Text & "g(" & y0 * yf - 2 * x0 * xf * y0 * yf & ")"
Text1.Text = Text1.Text & crlf
Next
Next
Next x0
Next tot
Text1.Text = Text1.Text & crlf & " done"
End Sub
|
Posted by Charlie
on 2015-10-09 11:22:43 |