All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math
Table's peculiarity (Posted on 2015-11-29) Difficulty: 3 of 5
Prove that no matter how each cell of a 5 x 41 table is filled with a 0 or 1, one can choose 3 rows and 3 columns which intersect in 9 cells filled with identical numbers.

Prove that 41 is the lowest possible n for 5 x n table; i.e., the statement is not true for a 5 x 40 table.

Source: Colorado math contest.

No Solution Yet Submitted by Ady TZIDON    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
re(3): Example needed | Comment 5 of 6 |
(In reply to re(2): Example needed by broll)

I'm sure it was not intended to be any more esoteric than that the three rows intersect the three columns, just as each row intersects each column.  In this case, the set of intersections numbers 9, and it is those 9 that are intended to match.
  Posted by Charlie on 2015-11-30 19:09:30

Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (0)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information