Start with the identites:
(A+B)^2 = (A^2+B^2) + 2(A*B)
(A+B)^3 = (A^3+B^3) + 3*(A+B)*(A*B)
Rearrange the first as:
A*B = [(A+B)^2 - (A^2+B^2)]/2
Substitute into the second:
(A+B)^3 = (A^3+B^3) + 3*(A+B)*[(A+B)^2 - (A^2+B^2)]/2
Let A+B=S for convenience and plug in the given values to get:
S^3 = 10 + 3*S*[S^2 - 7]/2
S^3 = 10 + (3/2)*S^3 - (21/2)*S
0 = S^3 - 21S + 20
S = 4, 1, or -5
Then the maximum value of A+B is 4