Consider that each term of the
Fibonacci sequence is represented in the hexadecimal (base 16) system.
The nth term of this sequence is denoted by F(n).
Find the last three digits of F((2016)
16).
The puzzle asks for the 8214th (this ordinal number in decimal, equivalent to 2016th hexadecimal) Fibonacci number's last three digits in hex representation.
Answer: EC8
The first few Fibonacci numbers were shown on the screen in decimal to assure we were assigning the correct values: F(1)=1: F(2)=1: F(3)=2, etc. rather than another numbering system.
5 kill "dghexfib.txt":open "dghexfib.txt" for output as #2
10 N=(2*16*16+1)*16+6
20 print N
30 K=1:F=1
40 for K=2 to N
50 Nxt=F+P
60 P=F
70 F=Nxt
80 if K<20 then print K,F
90 next
100 F2=F
110 while F2>0
120 print #2,F2@16
130 F2=F2\16
140 wend
150 close #2
finds this list of digits, starting with the rightmost and ending with the leftmost, shown as decimal representations of those larger than 9:
8
12
14
6
7
9
8
6
13
2
11
9
8
12
8
5
11
6
6
7
6
8
11
12
10
3
6
0
2
11
14
6
11
11
7
10
3
12
3
6
7
9
0
5
0
2
14
12
6
11
11
6
9
6
13
2
3
6
13
5
3
13
3
4
4
6
12
8
15
9
7
11
8
6
0
0
9
10
2
0
13
10
0
9
4
14
9
6
12
0
6
15
13
0
10
14
3
10
4
7
15
7
2
15
3
10
9
12
5
14
7
11
0
0
0
5
2
6
9
8
8
3
9
8
7
0
1
8
11
4
4
9
14
13
0
15
6
10
1
11
0
14
2
5
5
8
0
4
15
1
14
7
11
15
7
13
9
5
4
13
5
6
3
15
9
4
15
9
12
4
1
5
6
5
8
12
1
6
5
0
0
13
12
2
13
11
2
3
0
2
3
11
3
8
12
2
1
7
4
11
6
4
11
0
15
7
8
9
4
10
3
1
9
10
9
13
15
10
10
10
13
0
6
3
6
10
8
8
10
4
2
3
11
1
3
14
15
1
8
11
15
7
11
12
3
15
8
0
10
3
12
0
7
15
2
11
10
4
7
7
10
4
1
11
9
5
13
6
14
1
9
15
5
12
8
12
9
0
10
1
14
13
4
14
5
13
8
14
3
10
3
7
8
2
7
12
2
1
4
15
10
6
1
9
1
15
11
12
7
0
5
15
14
12
0
3
0
6
4
15
11
3
0
2
2
4
2
3
5
0
9
6
12
15
4
10
0
3
4
6
2
5
1
14
11
4
13
3
8
5
15
11
3
12
3
11
2
0
3
1
9
12
12
0
8
0
15
3
0
2
10
4
14
1
6
12
7
11
11
13
8
3
5
6
12
7
7
0
6
6
14
0
2
12
10
8
9
10
10
6
15
1
12
7
5
8
2
15
14
14
12
7
4
14
5
6
2
10
5
0
9
1
13
8
15
14
5
5
8
1
7
8
15
10
7
11
12
15
12
5
2
1
7
13
12
7
12
8
0
13
3
6
8
11
8
1
0
4
2
11
0
5
8
2
1
10
12
7
4
10
3
2
12
10
10
5
3
10
4
8
8
8
1
9
3
13
8
4
10
2
9
3
1
5
2
13
11
13
5
1
7
5
1
13
4
8
9
9
4
8
11
13
12
9
3
7
1
9
8
12
0
1
9
5
9
8
0
13
11
2
13
10
15
12
6
9
11
14
8
2
10
2
1
12
8
4
10
12
5
13
15
9
8
3
10
5
12
9
3
0
2
1
0
10
12
0
5
12
0
15
1
13
12
2
1
1
15
4
13
8
3
10
5
14
2
5
3
1
12
6
4
10
13
3
6
11
8
3
7
3
6
1
2
4
0
0
6
5
1
7
8
9
14
12
12
8
6
6
6
9
7
10
10
5
3
2
8
5
9
14
4
11
7
13
2
2
14
14
7
14
5
15
6
6
15
9
15
13
10
7
12
6
2
3
14
6
7
4
12
14
0
3
3
15
6
8
13
2
0
11
1
11
12
12
5
5
5
0
4
5
6
1
2
7
15
2
14
7
11
0
11
11
7
3
11
15
8
0
0
15
15
4
1
8
8
14
2
7
1
6
8
9
10
11
12
9
2
11
1
9
5
1
4
0
11
1
9
11
2
4
10
7
14
2
10
14
1
13
6
6
10
14
9
12
15
11
6
2
4
14
12
6
7
10
6
11
15
15
4
11
1
13
9
7
5
10
11
9
2
13
14
7
6
11
12
8
13
13
15
8
3
7
1
0
12
4
12
15
8
10
10
6
7
7
6
8
13
6
13
8
15
10
8
8
7
15
9
5
3
4
14
13
4
3
4
6
5
8
5
0
3
5
0
12
8
12
3
3
12
3
4
13
12
1
11
2
8
12
0
8
8
15
2
1
8
8
15
0
10
0
15
15
6
14
3
8
2
0
6
7
3
2
7
7
13
13
5
3
0
9
15
9
6
7
8
2
1
4
9
9
7
6
9
4
9
9
9
1
15
6
2
0
6
15
14
2
1
7
4
7
11
15
4
3
6
10
0
11
4
13
4
14
1
2
0
1
15
1
6
10
10
9
10
11
11
9
7
12
2
12
6
9
5
13
5
3
8
9
11
11
4
3
0
4
7
0
14
7
13
7
4
13
11
15
11
2
6
5
2
1
3
5
1
2
8
10
12
4
3
4
9
5
12
14
5
6
10
0
11
6
3
2
1
10
13
4
1
10
15
5
4
12
5
0
4
11
13
11
15
12
1
11
7
15
13
3
8
14
11
9
15
11
0
0
1
0
3
10
12
14
6
5
10
6
2
0
12
12
4
2
15
12
9
8
2
13
4
11
15
15
14
7
4
11
4
12
14
4
4
8
8
1
6
10
13
2
6
7
14
15
7
11
2
9
10
4
7
7
10
2
4
1
4
12
15
3
7
10
2
5
14
1
1
12
11
15
5
2
13
8
13
10
7
4
4
12
2
11
12
6
10
12
6
0
7
6
15
5
2
4
1
2
0
11
8
14
5
10
3
14
3
3
2
1
0
10
14
14
15
14
2
4
9
0
8
13
0
7
15
15
5
6
5
10
14
13
1
11
0
2
8
5
1
6
1
3
12
6
10
6
9
0
15
9
7
8
8
3
8
0
2
15
5
11
3
4
6
2
3
3
2
3
2
15
5
13
5
9
12
1
6
12
5
2
11
5
7
4
4
11
3
11
4
11
8
9
4
9
14
8
13
12
12
3
15
9
1
10
9
10
0
1
13
11
6
1
12
4
12
6
7
9
11
5
2
2
4
11
3
12
1
11
12
14
9
7
11
4
3
4
10
2
8
14
4
9
13
13
8
13
7
8
12
13
3
0
13
12
1
7
10
4
7
7
9
2
12
10
11
6
3
1
4
10
11
9
2
6
1
5
6
7
9
10
2
11
15
12
13
4
7
6
10
8
6
13
0
10
14
11
9
12
3
5
10
9
10
0
2
13
4
2
5
12
4
13
5
12
5
11
0
4
11
6
1
8
12
11
11
4
2
9
6
15
12
15
9
6
14
0
1
11
10
0
4
14
3
4
4
0
13
10
10
15
6
9
4
5
7
11
9
3
8
7
10
7
0
4
4
3
0
14
6
4
0
5
5
5
12
15
9
2
13
9
8
13
12
14
8
2
3
9
15
5
8
0
0
3
4
2
11
12
6
11
15
10
2
0
12
6
9
4
0
9
8
2
The number has 1426 digits and it begins and ends:
2890496C02AFB6 ... 8C89B2D68976EC8
|
Posted by Charlie
on 2016-06-16 15:09:16 |