Each of A, B, C, A+B*C, B+C*A and C+A*B is a prime number.
Find the possible remainders when A+B+C is divided by 6.
Exactly one of the numbers must be even (that is, 2), so that one of each term in the totals A+B*C, B+A*C and C+A*B is even and the other odd. Therefore A+B+C includes one even and two odds, making it even, so the remainder mod 6 is even.
A, B and C are shown in increasing sequence, as order does not matter. The total, and the total mod 6 are shown to the right of each set.
All the possible even remainders do occur in the list.
2 3 5 10 4
2 3 7 12 0
2 5 7 14 2
which is sufficient to show all the remainders. But the frequency changes drastically as the numbers get higher:
2 3 13 18 0
2 3 17 22 4
2 5 13 20 2
2 5 19 26 2
2 7 23 32 2
2 13 17 32 2
2 5 31 38 2
2 7 47 56 2
2 7 53 62 2
2 5 61 68 2
2 13 47 62 2
2 23 37 62 2
2 23 43 68 2
2 5 73 80 2
2 5 79 86 2
2 19 59 80 2
2 3 97 102 0
2 5 97 104 2
2 23 67 92 2
2 43 53 98 2
2 19 89 110 2
2 11 109 122 2
2 17 103 122 2
2 13 113 128 2
2 23 103 128 2
2 47 73 122 2
2 47 97 146 2
2 3 167 172 4
2 11 151 164 2
2 3 173 178 4
2 43 107 152 2
2 61 89 152 2
2 17 157 176 2
2 43 113 158 2
2 61 101 164 2
2 5 181 188 2
2 13 173 188 2
2 53 127 182 2
2 83 97 182 2
2 7 197 206 2
2 3 227 232 4
2 19 191 212 2
2 23 193 218 2
2 61 149 212 2
2 53 163 218 2
2 71 139 212 2
2 17 223 242 2
2 71 151 224 2
2 89 139 230 2
2 7 257 266 2
2 41 199 242 2
2 37 233 272 2
2 41 229 272 2
2 59 199 260 2
2 19 269 290 2
2 79 191 272 2
2 7 293 302 2
2 131 139 272 2
2 37 263 302 2
2 7 317 326 2
2 43 263 308 2
2 59 241 302 2
2 127 167 296 2
2 11 331 344 2
2 17 313 332 2
2 61 251 314 2
2 101 199 302 2
2 3 353 358 4
2 31 311 344 2
2 53 277 332 2
2 59 271 332 2
2 67 263 332 2
2 5 373 380 2
2 13 353 368 2
2 29 331 362 2
2 3 383 388 4
2 47 307 356 2
2 103 233 338 2
2 163 173 338 2
2 7 383 392 2
2 109 239 350 2
2 61 311 374 2
2 89 271 362 2
2 23 373 398 2
2 73 293 368 2
2 53 337 392 2
2 131 241 374 2
2 19 401 422 2
2 59 349 410 2
2 107 277 386 2
2 167 223 392 2
2 83 313 398 2
2 19 419 440 2
2 71 349 422 2
2 5 457 464 2
2 197 223 422 2
2 181 239 422 2
2 193 233 428 2
2 181 251 434 2
2 19 461 482 2
2 23 457 482 2
2 3 503 508 4
2 113 337 452 2
2 31 461 494 2
2 127 347 476 2
2 109 359 470 2
2 59 439 500 2
2 173 307 482 2
2 53 457 512 2
2 163 317 482 2
2 11 541 554 2
2 67 443 512 2
2 17 523 542 2
2 109 389 500 2
2 241 251 494 2
2 109 401 512 2
2 23 547 572 2
2 61 479 542 2
2 149 379 530 2
2 7 587 596 2
2 7 593 602 2
2 3 607 612 0
2 151 389 542 2
2 193 347 542 2
2 37 557 596 2
2 269 271 542 2
2 257 283 542 2
2 149 421 572 2
2 17 607 626 2
2 173 397 572 2
2 5 643 650 2
2 23 607 632 2
2 29 601 632 2
2 43 587 632 2
2 67 557 626 2
2 139 461 602 2
2 151 449 602 2
2 163 443 608 2
2 79 569 650 2
2 131 499 632 2
2 239 379 620 2
2 53 613 668 2
2 257 367 626 2
2 73 593 668 2
2 167 463 632 2
2 197 433 632 2
2 251 379 632 2
2 5 709 716 2
2 103 563 668 2
2 181 461 644 2
2 67 617 686 2
2 257 397 656 2
2 83 607 692 2
2 137 547 686 2
2 311 349 662 2
2 149 541 692 2
2 281 379 662 2
2 181 491 674 2
2 269 409 680 2
2 13 743 758 2
2 67 653 722 2
2 107 607 716 2
2 331 359 692 2
2 163 557 722 2
2 7 773 782 2
2 7 797 806 2
2 199 509 710 2
2 5 811 818 2
2 331 389 722 2
2 29 769 800 2
2 31 761 794 2
2 103 653 758 2
2 197 547 746 2
2 101 661 764 2
2 79 701 782 2
The total ordinal positions of primes used was limited to 150 (for example, if all were the same prime it would be the 50th prime).
All the remainders from division by 6 were even (0, 2 or 4). The 4's get sparser later on, and the 0's get sparse very quickly.
DefDbl A-Z
Dim crlf$
Private Sub Form_Load()
Text1.Text = ""
crlf$ = Chr(13) + Chr(10)
Form1.Visible = True
For t = 3 To 150
For ao = 1 To t / 3
a = prm(ao)
For bo = ao To (t - a) / 2
b = prm(bo)
co = t - ao - bo
c = prm(co)
a1 = a + b * c
If prmdiv(a1) = a1 Then
b1 = b + a * c
If prmdiv(b1) = b1 Then
c1 = c + b * a
If prmdiv(c1) = c1 Then
Text1.Text = Text1.Text & a & Str(b) & Str(c) & " " & a + b + c & Str((a + b + c) Mod 6) & crlf
End If
End If
End If
DoEvents
Next
Next
Next
Text1.Text = Text1.Text & crlf & "done"
End Sub
Function prm(i)
Dim p As Long
Open "17-bit primes.bin" For Random As #111 Len = 4
Get #111, i, p
prm = p
Close 111
End Function
Function prmdiv(num)
Dim n, dv, q
If num = 1 Then prmdiv = 1: Exit Function
n = Abs(num): If n > 0 Then limit = Sqr(n) Else limit = 0
If limit <> Int(limit) Then limit = Int(limit + 1)
dv = 2: GoSub DivideIt
dv = 3: GoSub DivideIt
dv = 5: GoSub DivideIt
dv = 7
Do Until dv > limit
GoSub DivideIt: dv = dv + 4 '11
GoSub DivideIt: dv = dv + 2 '13
GoSub DivideIt: dv = dv + 4 '17
GoSub DivideIt: dv = dv + 2 '19
GoSub DivideIt: dv = dv + 4 '23
GoSub DivideIt: dv = dv + 6 '29
GoSub DivideIt: dv = dv + 2 '31
GoSub DivideIt: dv = dv + 6 '37
Loop
If n > 1 Then prmdiv = n
Exit Function
DivideIt:
Do
q = Int(n / dv)
If q * dv = n And n > 0 Then
prmdiv = dv: Exit Function
Else
Exit Do
End If
Loop
Return
End Function
|
Posted by Charlie
on 2016-10-17 10:51:13 |