L(N) denotes the Nth
Lucas Number.
Find the first three digits of L(2016)
The reference gives the value of Lucas number n, when n >=2, as the nearest integer to phi^n.
phi ~= 1.618033988749895
2016 * log(phi) ~= 421.3190827439572 (common log)
10^0.3190827439572 ~= 2.084888068563217
The first three digits of L(2016) are 208.
In fact we should have lost only 3 or 4 significant digits in the log, so it's safe to say L(2016) begins 208488806856....
To be more exact,
5 open "lucasdig.txt" for output as #2
10 point 200
20 Phi=(1+sqrt(5))/2
30 L=2016*log(Phi)/log(10)
50 N=10^L
60 print N
70 print #2,int(N+0.5)
80 close #2
prints
2084888068563090912458516390561325281171020479491164173354049239002708488595943349565836183183731118374225
4888383410947905292915756002825362140440186026243514077500621846337171808675725220399882236988796256624844
5402479607357252824391008958625008649722442717841891717457928730425527558619547497634874094593660339644192
68550729415193388283501690725596998976916646809132118229619532708413826849176632242912696523533298094082
as the exact value of all the digits.
|
Posted by Charlie
on 2016-11-07 10:54:14 |