All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math
Lucky seven II (Posted on 2010-06-23) Difficulty: 4 of 5
A duodecimal positive integer N consists of a string of sevens, that is, N = 77777.....7777 (base 12) such that N is divisible by the base 12 number 147.

Reading left to right, determine the last four duodecimal digits of the quotient.

For an extra challenge, solve this problem without using a computer program.

See The Solution Submitted by K Sengupta    
Rating: 5.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution Solution Comment 2 of 2 |
Note: I'm using base 10 up until the final answer.

The problem is equivalent to "Given N is an integer equal to (7/11)*(12^x-1) for some integer x and N is a multiple of 199, then find N mod 12^4."

199 is prime, so by Fermat's Little Theorem, 12^198 - 1 is a multiple of 199.  Then x=198 makes N a multiple of 199.  More concretely, we can write 7*(12^198 - 1) = 11*199*K for some integer K.

Then take both sides mod 12^4=20736.  This simplifies the equation to 2189*K=20729 (mod 20736).  This is just a regular linear congruence.  Its primitive solution is K=9757.

Convert 9757 to base 12 to yield 5791.

  Posted by Brian Smith on 2016-12-23 00:20:40
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (3)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information