The left column below shows the numbers required when redundant parentheses are not allowed. Both columns represent empty parentheses not being allowed.
redundant parentheses
not allowed allowed
n number of ways n number of ways
1 3 1 3
2 14 2 20
3 70 3 175
4 363 4 1764
5 1925 5 19404
6 10364 6 226512
7 56412 7 2760615
With redundant parentheses not allowed, as per the puzzle, the following are the ways spelled out, with x's representing whatever letters are present, for the first four n:
1
x(x)
(xx)
(x)x 3
2
x(x(x))
x(x)(x)
x((x)x)
(xx(x))
(xx)(x)
(x(xx))
(x(x)x)
(x(x))x
(x)x(x)
(x)(xx)
(x)(x)x
((xx)x)
((x)xx)
((x)x)x 14
3
x(x(x(x)))
x(x(x)(x))
x(x(x))(x)
x(x((x)x))
x(x)(x(x))
x(x)(x)(x)
x(x)((x)x)
x((x(x))x)
x((x)x)(x)
x((x)(x)x)
x(((x)x)x)
(xx(x(x)))
(xx(x)(x))
(xx(x))(x)
(xx((x)x))
(xx)(x(x))
(xx)(x)(x)
(xx)((x)x)
(x(xx(x)))
(x(xx)(x))
(x(xx))(x)
(x(x(xx)))
(x(x(x)x))
(x(x(x))x)
(x(x(x)))x
(x(x)x(x))
(x(x)x)(x)
(x(x)(xx))
(x(x)(x)x)
(x(x)(x))x
(x(x))x(x)
(x(x))(xx)
(x(x))(x)x
(x((xx)x))
(x((x)xx))
(x((x)x)x)
(x((x)x))x
(x)x(x(x))
(x)x(x)(x)
(x)x((x)x)
(x)(xx(x))
(x)(xx)(x)
(x)(x(xx))
(x)(x(x)x)
(x)(x(x))x
(x)(x)x(x)
(x)(x)(xx)
(x)(x)(x)x
(x)((xx)x)
(x)((x)xx)
(x)((x)x)x
((xx(x))x)
((xx)x)(x)
((xx)(x)x)
((x(xx))x)
((x(x)x)x)
((x(x))xx)
((x(x))x)x
((x)xx)(x)
((x)x(x)x)
((x)x)x(x)
((x)x)(xx)
((x)x)(x)x
((x)(xx)x)
((x)(x)xx)
((x)(x)x)x
(((xx)x)x)
(((x)xx)x)
(((x)x)xx)
(((x)x)x)x 70
4
x(x(x(x(x))))
x(x(x(x)(x)))
x(x(x(x))(x))
x(x(x(x)))(x)
x(x(x((x)x)))
x(x(x)(x(x)))
x(x(x)(x)(x))
x(x(x)(x))(x)
x(x(x)((x)x))
x(x(x))(x(x))
x(x(x))(x)(x)
x(x(x))((x)x)
x(x((x(x))x))
x(x((x)x)(x))
x(x((x)x))(x)
x(x((x)(x)x))
x(x(((x)x)x))
x(x)(x(x(x)))
x(x)(x(x)(x))
x(x)(x(x))(x)
x(x)(x((x)x))
x(x)(x)(x(x))
x(x)(x)(x)(x)
x(x)(x)((x)x)
x(x)((x(x))x)
x(x)((x)x)(x)
x(x)((x)(x)x)
x(x)(((x)x)x)
x((x(x(x)))x)
x((x(x)(x))x)
x((x(x))x)(x)
x((x(x))(x)x)
x((x((x)x))x)
x((x)x)(x(x))
x((x)x)(x)(x)
x((x)x)((x)x)
x((x)(x(x))x)
x((x)(x)x)(x)
x((x)(x)(x)x)
x((x)((x)x)x)
x(((x(x))x)x)
x(((x)x)x)(x)
x(((x)x)(x)x)
x(((x)(x)x)x)
x((((x)x)x)x)
(xx(x(x(x))))
(xx(x(x)(x)))
(xx(x(x))(x))
(xx(x(x)))(x)
(xx(x((x)x)))
(xx(x)(x(x)))
(xx(x)(x)(x))
(xx(x)(x))(x)
(xx(x)((x)x))
(xx(x))(x(x))
(xx(x))(x)(x)
(xx(x))((x)x)
(xx((x(x))x))
(xx((x)x)(x))
(xx((x)x))(x)
(xx((x)(x)x))
(xx(((x)x)x))
(xx)(x(x(x)))
(xx)(x(x)(x))
(xx)(x(x))(x)
(xx)(x((x)x))
(xx)(x)(x(x))
(xx)(x)(x)(x)
(xx)(x)((x)x)
(xx)((x(x))x)
(xx)((x)x)(x)
(xx)((x)(x)x)
(xx)(((x)x)x)
(x(xx(x(x))))
(x(xx(x)(x)))
(x(xx(x))(x))
(x(xx(x)))(x)
(x(xx((x)x)))
(x(xx)(x(x)))
(x(xx)(x)(x))
(x(xx)(x))(x)
(x(xx)((x)x))
(x(xx))(x(x))
(x(xx))(x)(x)
(x(xx))((x)x)
(x(x(xx(x))))
(x(x(xx)(x)))
(x(x(xx))(x))
(x(x(xx)))(x)
(x(x(x(xx))))
(x(x(x(x)x)))
(x(x(x(x))x))
(x(x(x(x)))x)
(x(x(x(x))))x
(x(x(x)x(x)))
(x(x(x)x)(x))
(x(x(x)x))(x)
(x(x(x)(xx)))
(x(x(x)(x)x))
(x(x(x)(x))x)
(x(x(x)(x)))x
(x(x(x))x(x))
(x(x(x))x)(x)
(x(x(x))(xx))
(x(x(x))(x)x)
(x(x(x))(x))x
(x(x(x)))x(x)
(x(x(x)))(xx)
(x(x(x)))(x)x
(x(x((xx)x)))
(x(x((x)xx)))
(x(x((x)x)x))
(x(x((x)x))x)
(x(x((x)x)))x
(x(x)x(x(x)))
(x(x)x(x)(x))
(x(x)x(x))(x)
(x(x)x((x)x))
(x(x)x)(x(x))
(x(x)x)(x)(x)
(x(x)x)((x)x)
(x(x)(xx(x)))
(x(x)(xx)(x))
(x(x)(xx))(x)
(x(x)(x(xx)))
(x(x)(x(x)x))
(x(x)(x(x))x)
(x(x)(x(x)))x
(x(x)(x)x(x))
(x(x)(x)x)(x)
(x(x)(x)(xx))
(x(x)(x)(x)x)
(x(x)(x)(x))x
(x(x)(x))x(x)
(x(x)(x))(xx)
(x(x)(x))(x)x
(x(x)((xx)x))
(x(x)((x)xx))
(x(x)((x)x)x)
(x(x)((x)x))x
(x(x))x(x(x))
(x(x))x(x)(x)
(x(x))x((x)x)
(x(x))(xx(x))
(x(x))(xx)(x)
(x(x))(x(xx))
(x(x))(x(x)x)
(x(x))(x(x))x
(x(x))(x)x(x)
(x(x))(x)(xx)
(x(x))(x)(x)x
(x(x))((xx)x)
(x(x))((x)xx)
(x(x))((x)x)x
(x((xx(x))x))
(x((xx)x)(x))
(x((xx)x))(x)
(x((xx)(x)x))
(x((x(xx))x))
(x((x(x)x)x))
(x((x(x))xx))
(x((x(x))x)x)
(x((x(x))x))x
(x((x)xx)(x))
(x((x)xx))(x)
(x((x)x(x)x))
(x((x)x)x(x))
(x((x)x)x)(x)
(x((x)x)(xx))
(x((x)x)(x)x)
(x((x)x)(x))x
(x((x)x))x(x)
(x((x)x))(xx)
(x((x)x))(x)x
(x((x)(xx)x))
(x((x)(x)xx))
(x((x)(x)x)x)
(x((x)(x)x))x
(x(((xx)x)x))
(x(((x)xx)x))
(x(((x)x)xx))
(x(((x)x)x)x)
(x(((x)x)x))x
(x)x(x(x(x)))
(x)x(x(x)(x))
(x)x(x(x))(x)
(x)x(x((x)x))
(x)x(x)(x(x))
(x)x(x)(x)(x)
(x)x(x)((x)x)
(x)x((x(x))x)
(x)x((x)x)(x)
(x)x((x)(x)x)
(x)x(((x)x)x)
(x)(xx(x(x)))
(x)(xx(x)(x))
(x)(xx(x))(x)
(x)(xx((x)x))
(x)(xx)(x(x))
(x)(xx)(x)(x)
(x)(xx)((x)x)
(x)(x(xx(x)))
(x)(x(xx)(x))
(x)(x(xx))(x)
(x)(x(x(xx)))
(x)(x(x(x)x))
(x)(x(x(x))x)
(x)(x(x(x)))x
(x)(x(x)x(x))
(x)(x(x)x)(x)
(x)(x(x)(xx))
(x)(x(x)(x)x)
(x)(x(x)(x))x
(x)(x(x))x(x)
(x)(x(x))(xx)
(x)(x(x))(x)x
(x)(x((xx)x))
(x)(x((x)xx))
(x)(x((x)x)x)
(x)(x((x)x))x
(x)(x)x(x(x))
(x)(x)x(x)(x)
(x)(x)x((x)x)
(x)(x)(xx(x))
(x)(x)(xx)(x)
(x)(x)(x(xx))
(x)(x)(x(x)x)
(x)(x)(x(x))x
(x)(x)(x)x(x)
(x)(x)(x)(xx)
(x)(x)(x)(x)x
(x)(x)((xx)x)
(x)(x)((x)xx)
(x)(x)((x)x)x
(x)((xx(x))x)
(x)((xx)x)(x)
(x)((xx)(x)x)
(x)((x(xx))x)
(x)((x(x)x)x)
(x)((x(x))xx)
(x)((x(x))x)x
(x)((x)xx)(x)
(x)((x)x(x)x)
(x)((x)x)x(x)
(x)((x)x)(xx)
(x)((x)x)(x)x
(x)((x)(xx)x)
(x)((x)(x)xx)
(x)((x)(x)x)x
(x)(((xx)x)x)
(x)(((x)xx)x)
(x)(((x)x)xx)
(x)(((x)x)x)x
((xx(x(x)))x)
((xx(x)(x))x)
((xx(x))x)(x)
((xx(x))(x)x)
((xx((x)x))x)
((xx)x)(x(x))
((xx)x)(x)(x)
((xx)x)((x)x)
((xx)(x(x))x)
((xx)(x)x)(x)
((xx)(x)(x)x)
((xx)((x)x)x)
((x(xx(x)))x)
((x(xx)(x))x)
((x(xx))x)(x)
((x(xx))(x)x)
((x(x(xx)))x)
((x(x(x)x))x)
((x(x(x))x)x)
((x(x(x)))xx)
((x(x(x)))x)x
((x(x)x(x))x)
((x(x)x)x)(x)
((x(x)x)(x)x)
((x(x)(xx))x)
((x(x)(x)x)x)
((x(x)(x))xx)
((x(x)(x))x)x
((x(x))xx)(x)
((x(x))x(x)x)
((x(x))x)x(x)
((x(x))x)(xx)
((x(x))x)(x)x
((x(x))(xx)x)
((x(x))(x)xx)
((x(x))(x)x)x
((x((xx)x))x)
((x((x)xx))x)
((x((x)x)x)x)
((x((x)x))xx)
((x((x)x))x)x
((x)xx)(x(x))
((x)xx)(x)(x)
((x)xx)((x)x)
((x)x(x(x))x)
((x)x(x)x)(x)
((x)x(x)(x)x)
((x)x((x)x)x)
((x)x)x(x(x))
((x)x)x(x)(x)
((x)x)x((x)x)
((x)x)(xx(x))
((x)x)(xx)(x)
((x)x)(x(xx))
((x)x)(x(x)x)
((x)x)(x(x))x
((x)x)(x)x(x)
((x)x)(x)(xx)
((x)x)(x)(x)x
((x)x)((xx)x)
((x)x)((x)xx)
((x)x)((x)x)x
((x)(xx(x))x)
((x)(xx)x)(x)
((x)(xx)(x)x)
((x)(x(xx))x)
((x)(x(x)x)x)
((x)(x(x))xx)
((x)(x(x))x)x
((x)(x)xx)(x)
((x)(x)x(x)x)
((x)(x)x)x(x)
((x)(x)x)(xx)
((x)(x)x)(x)x
((x)(x)(xx)x)
((x)(x)(x)xx)
((x)(x)(x)x)x
((x)((xx)x)x)
((x)((x)xx)x)
((x)((x)x)xx)
((x)((x)x)x)x
(((xx(x))x)x)
(((xx)x)x)(x)
(((xx)x)(x)x)
(((xx)(x)x)x)
(((x(xx))x)x)
(((x(x)x)x)x)
(((x(x))xx)x)
(((x(x))x)xx)
(((x(x))x)x)x
(((x)xx)x)(x)
(((x)xx)(x)x)
(((x)x(x)x)x)
(((x)x)xx)(x)
(((x)x)x(x)x)
(((x)x)x)x(x)
(((x)x)x)(xx)
(((x)x)x)(x)x
(((x)x)(xx)x)
(((x)x)(x)xx)
(((x)x)(x)x)x
(((x)(xx)x)x)
(((x)(x)xx)x)
(((x)(x)x)xx)
(((x)(x)x)x)x
((((xx)x)x)x)
((((x)xx)x)x)
((((x)x)xx)x)
((((x)x)x)xx)
((((x)x)x)x)x 363
Dim crlf$, n, plevel, opensupply, closesupply, xsupply, s$, ct,slvl$
Private Sub Form_Load()
Form1.Visible = True
Text1.Text = ""
crlf = Chr$(13) + Chr$(10)
For n = 1 To 7
Text1.Text = Text1.Text & crlf & n
plevel = 0: xsupply = n + 1: opensupply = n: closesupply = n
s = "": ct = 0
addOn
Text1.Text = Text1.Text & Str(ct)
Next
Text1.Text = Text1.Text & crlf & " done"
End Sub
Sub addOn()
DoEvents
If Len(s) = 3 * n + 1 Then
If n < 4 Then
' Text1.Text = Text1.Text & crlf & s
End If
ct = ct + 1
Else
If xsupply > 0 Then
s = s + "x"
xsupply = xsupply - 1
addOn
xsupply = xsupply + 1
s = Left(s, Len(s) - 1)
End If
If opensupply > 0 Then
s = s + "("
opensupply = opensupply - 1
plevel = plevel + 1
addOn
plevel = plevel - 1
opensupply = opensupply + 1
s = Left(s, Len(s) - 1)
End If
If plevel > 0 And Right(s, 1) <> "(" Then
s = s + ")"
closesupply = closesupply - 1
plevel = plevel - 1
slv = slv + Chr(plevel)
good = 1
For i = Len(slv) - 1 To 1 Step -1
If Asc(Mid(slv, i, 1)) = plevel Then Exit For
Next i
If Right(s, 2) = "))" And Mid(s, i + 1, 2) = "((" Then good = 0
If good Then addOn
closesupply = closesupply + 1
plevel = plevel + 1
s = Left(s, Len(s) - 1)
slv = Left(slv, Len(slv) - 1)
End If End If
End Sub
The bolded portion above is what disallows redundant parentheses.
The sequence matches A261207, "Expansion of (x-1)/8 - (x^2-4*x-1)/(8*sqrt(x^2-6*x+1))".
The OEIS gives formulae:
a(n) = Sum_{i=0..n-1}(2^i*(-1)^(n-i-1)*C(n+1,n-i-1)*C(n+i,n)).
a(n) = (-1)^(n+1)*(n*(n+1)/2)*hypergeom([1-n, 1+n], [3], 2)). - Peter Luschny, Aug 12 2015
a(n) = A010683(n-1)*(n+1)/2. - Peter Luschny, Aug 12 2015
a(n) ~ (3+2*sqrt(2))^n / (2^(9/4)*sqrt(Pi*n)). - Vaclav Kotesovec, Aug 17 2015
and indeed
10 for N=1 to 10
20 Tot=0
30 for I=0 to N-1
40 Tot=Tot+2^I*(-1)^(N-I-1)*combi(N+1,N-I-1)*combi(N+I,N)
50 next
60 print N,Tot
70 next N
produces
1 1
2 3
3 14
4 70
5 363
6 1925
7 10364
8 56412
9 309605
10 1710247
showing the n they are using is one less than the n defined in the puzzle.
The result is that the formula for our n should be modified to
Sum_{i=0..n}(2^i*(-1)^(n-i)*C(n+2,n-i)*C(n+i+1,n+1))
so that
10 for N=1 to 10
20 Tot=0
30 for I=0 to N
40 Tot=Tot+2^I*(-1)^(N-I)*combi(N+2,N-I)*combi(N+I+1,N+1)
50 next
60 print N,Tot
70 next N
produces
1 3
2 14
3 70
4 363
5 1925
6 10364
7 56412
8 309605
9 1710247
10 9496746
Continuing:
1 3
2 14
3 70
4 363
5 1925
6 10364
7 56412
8 309605
9 1710247
10 9496746
11 52960674
12 296408847
13 1663998345
14 9365980152
15 52837614456
16 298676661129
17 1691325089867
18 9592607927750
19 54482777049918
20 309837754937843
21 1764046900535053
22 10054065679046004
23 57357471874390100
24 327507083273000813
25 1871559305305229295
26 10703157635913663074
27 61252223125211995162
28 350761642234091168535
29 2009849405937979048209
30 11522823167447160856560
31 66097138071772826050032
32 379333031546044047384081
33 2178010945008139983802515
34 12510916032616822557907326
35 71894733600471118955053878
36 413308289609672326556769147
37 2376901375769641330819950741
38 13674135145370968737329751660
39 78692351113720634892373948236
40 453003943995018749091196993653
41 2608564825679519197207800388407
42 15025375086466714962427442767386
43 86569981252104537288825694376850
44 498910104362046633758630937340959
45 2875976062021950436525180764765849
46 16582559470632495843103679197866984
47 95634991484290917398859514860529512
48 551666931720733934091213228861104025
49 3182937443102904866961069889020715227
50 18368202566398646881542215187779427126
Edited on January 3, 2017, 3:25 pm
|
Posted by Charlie
on 2017-01-03 15:22:32 |